共查询到20条相似文献,搜索用时 0 毫秒
1.
Dispersions of oil in water are encountered in a variety of industrial processes leading to a reduction in the performance of the heat exchangers when thermally treating such two phase fluids. This reduction is mainly due to changes in the thermal and hydrodynamical behavior of the two phase fluid. In the present work, an experimental investigation was performed to study the effects of light oil fouling on the heat transfer coefficient in a double‐pipe heat exchanger under turbulent flow conditions. The effects of different operating conditions on the fouling rate were investigated including: hot fluid Reynolds number (the dispersion), cold fluid Reynolds number, and time. The oil fouling rate was analyzed by determining the growth of fouling resistance with time and through pressure drop measurements. The influence of copper oxide (CuO) nanofluid on the fouling rate in the dispersion was also determined. It was found that the presence of dispersed oil causes a reduction in heat transfer coefficient by percentages depending on the Reynolds number of both cold and hot fluids and the concentration of oil. In addition, the time history of fouling resistance exhibited different trends with the flow rates of both fluids and its trend was influenced appreciably by the presence of CuO nanofluid. 相似文献
2.
In the present work, an experimental investigation is conducted to address the influence of inner pipe twisting on the overall performance of a double pipe heat exchanger. With the fluid to fluid heat exchange, both parallel and counter flow directions are examined as well. In addition to the original elliptical pipe, three pipes with different numbers of twisting (3, 5, and 7 twists per unit length) constructed from the elliptical pipe are considered where the heat transfer rate and pressure drop are addressed. All tests are carried out in the turbulent flow regime where the Reynolds number (Re) ranging from 5000 to 26,000 and water is used as the working medium. The obtained outcomes show that for both flow directions, there is an enhancement in the heat exchanger overall performance with all considered twisting pipes. The maximum enhancement in the Nusselt number is found to be 1.8 for the parallel flow and around 2.2 for the counter flow compared with the original pipe. The inner pipe with 7 twists, however, improves the overall performance the most, where a maximum performance enhancement factor of 1.63 and 1.9 are observed at Reynolds number of 26,000 in the parallel and counter flow configurations, respectively. 相似文献
3.
Mehdi Noorbakhsh Mohsen Pourfallah Seyed S. M. Ajarostaghi Mohammad Zaboli 《亚洲传热研究》2020,49(8):4678-4703
Heat exchangers are extensively used in various industries. In this study, the impact of geometric and flow parameters on the performance of a shell and double helical coil heat exchanger is studied numerically. The investigated geometric parameters include external coil pitch, internal coil pitch, internal coil diameter, and coil diameter. The influences of considered geometrical parameters are analyzed on the output temperature of the hot and cold fluid, convective heat transfer coefficient, pressure drop, and average Nusselt number. Water is considered as working fluid in both shell and tube. As an innovation, double helical coils are used instead of one in the heat exchanger. To compare the obtained results accurately, in each section, the heat transfer area (coil outer surface) is kept constant in all models. The results show that the geometrical parameters of double helical coils significantly affect the heat transfer rate. 相似文献
4.
5.
6.
本文建立了蓄冷平板相变换热器中蓄冷平板单体凝固过程变化规律的数理模型,并用一种简便方法求解了凝固过程非稳态移动界面传热问题,获得了有关传热速率,界面移动,载冷剂出口温度的变化规律,讨论了蓄冷平板相变换热器的传热特性。 相似文献
7.
The shell side heat transfer and pressure drop in counterflowing water were experimentally investigated on the basis of the overall heat transfer coefficient. The investigation was intended to identify ways to get higher performance for the cooler in a BWR nuclear power plant. The following three conclusions were reached in the study. (1) Predicted performance of the heat exchanger, using the overall heat transfer coefficient based on the outside area of the tube Ko, indicated an enhancement by 92% compared with the measured performance of the conventional segmental baffle‐type heat exchanger. (2) The tube side pressure drop ΔPt=20 kPa and the shell side pressure drop ΔPs=70 kPa were obtained, and were within the allowable value ΔPa=80 kPa. The shell side pressure drop of the low‐pressure drop spacer could be decreased by 20% as compared with that of the standard spacer. (3) The enhancement constant of the shell side heat transfer using the low‐pressure drop spacer was about 1.2 times as large as that of the standard spacer, regardless of the pumping power. © 2003 Wiley Periodicals, Inc. Heat Trans Asian Res, 32(5): 455–471, 2003; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.10097 相似文献
8.
Heat pipes and two-phase thermosyphon systems are passive heat transfer systems that employ a two-phase cycle of a working fluid within a completely sealed system. Consequently, heat exchangers based on heat pipes have low thermal resistance and high effective thermal conductivity, which can reach up to the order of (105 W/(m K)). In energy recovery systems where the two streams should be unmixed, such as air-conditioning systems of biological laboratories and operating rooms in hospitals, heat pipe heat exchangers (HPHEs) are recommended. In this study, an experimental and theoretical study was carried out on the thermal performance of an air-to-air HPHE filled with two refrigerants as working fluids, R22 and R407c. The heat pipe heat exchanger used was composed of two rows of copper heat pipes in a staggered manner, with 11 pipes per row. Tests were conducted at different airflow rates of 0.14, 0.18, and 0.22 m3/h, evaporator inlet-air temperatures of 40, 44, and 50°C, filling ratios of 45%, 70%, and 100%, and ratios of heat capacity rate of the evaporator to condenser sections (Ce/Cc) of 1 and 1.5. For HPHE's steady-state operation, a mathematical model for heat-transfer performance was set and solved using MATLAB. Results illustrated that the heat transfer rate was in direct proportion with the evaporator inlet-air temperature and flow rate. The highest HPHE's effectiveness was obtained at a 100% filling ratio and (Ce/Cc) of 1.5. The predicted and experimental values of condenser outlet-air temperature were in good agreement, with a maximum difference of 3%. HPHE's effectiveness was found to increase with the increase in evaporator inlet-air temperature and number of transfer units (NTU) and with the decrease in airflow rate, up to 33% and 20% for refrigerants R22 and R407c, respectively. Refrigerant R22 was the superior of the two refrigerants investigated. 相似文献
9.
一种监测换热器污垢的新方法 总被引:3,自引:1,他引:2
在考虑污垢对换热器传热性能影响的基础上,提出换热器当量总污垢热阻和污垢函数的概念,并给出换热器当量总污垢热阻的监测方法,讨论了换热流型、传热有效度ε和冷热流体热容量率比R对换热器当量总污垢热阻的影响。 相似文献
10.
11.
The effect of nanofluids on thermal performance of the miniature heat pipe radiator which was assembled by two heat pipes containing 0.6 vol.% SiO2/water nanofluids and 30 pieces of rectangular aluminum fins was investigated experimentally and theoretically. The wall temperatures of the miniature heat pipe and fin surface temperatures were measured. Results showed that the utilization of SiO2/water nanofluids as a working fluid in the heat pipe enhanced the heat performance by reducing wall temperature differences. Compared with Deionized water (DI water), the thermal resistance of the miniature heat pipe with SiO2/water nanofluids decreased by about 23% to 40%. Furthermore, the theoretical calculation on a basis of one dimension found that the fin heat dissipation in the miniature heat pipe radiator charged SiO2/water nanofluids was about 1.17 times of that of the DI water radiator. 相似文献
12.
13.
Yang Yu Xiao-Ni Qi Xiao-Chen Hou Xiao-Hang Qu Qian-Jian Guo He-Gang Zhu 《亚洲传热研究》2022,51(3):2667-2687
A large amount of waste heat generated in industrial production needs to be discharged by circulating cooling water systems. To save freshwater resources, freshwater cooling towers have been widely replaced by seawater cooling towers in coastal areas, but research on the thermal performance of seawater cooling towers is still relatively less. In this study, a detailed calculation model based on the heat/mass transfer process of seawater–air two-phase counterflow was established, and the reliability of the proposed model was verified. The computer program developed under the VC++ framework was used for the numerical solution of the model. The effects of five inlet parameters on the cooling efficiency and heat dissipation were studied. The simulation results showed that with the increase of salinity, the cooling performance was reduced. When the salinity increased by 10 g/kg, the outlet water temperature rose by about 0.13°C. The wet-bulb temperature increased by 1°C and the cooling efficiency increased by about 0.77%, while total heat dissipation was reduced by about 36.37 kW. When the air–water ratio increased, the cooling performance was improved, but the maximum cooling efficiency was affected by heat load. The change of dry-bulb temperature had little effect on the cooling performance. With the increase of water temperature, the cooling efficiency and heat dissipation increased. The calculation model and simulation results can provide practical guidance for the operation of seawater cooling towers. 相似文献
14.
15.
介绍了土壤源热泵竖直埋管换热器钻孔外的传统的无限长线热源模型,无限长圆柱模型,有限长线热源模型以及改进后的热湿传递的线热源模型,变热流的线热源模型,土壤分层的线热源模型。分析了各种模型之间的联系、区别以及优缺点。提出了完善土壤源热泵竖直埋管换热器钻孔外传热模型需进一步研究的内容。 相似文献
16.
用于电子元件散热的集成热管换热特性研究 总被引:1,自引:0,他引:1
本文对应用于电子元件散热的热管换热器在不同的加热功率、不同风量情况下的传热特性进行了实验研究,从而得出换热量、总热阻、翅片表面阻力系数、换热系数、总热阻与加热功率及风道内空气肫数的关系,并与市场上的SP-94型热管散热器及传统纯铜散热器进行了比较,发现该热管换热器无论是散热量、平均换热系数还是总热阻都有明显的优势。因此,这种散热器在实际工程应用中必将有着广泛的潜力。 相似文献
17.
18.
Momen S. M. Saleh Said Mekroussi Sahraoui Kherris Djallel Zebbar Nourredine Belghar 《亚洲传热研究》2023,52(1):7-27
The aim of this study is to investigate numerically the effect of sinusoidal temperature on mixed convection flow in a cavity filled with nanofluid and moving vertical walls by using a new temperature function, where thermal heating takes the form of the sinusoidal temperature; and could be found in various natural processes and industries such as solar energy, and cooling of electronic components. The heating is concentrated in the center and then distributed to both ends at different values of Rayleigh numbers, Reynolds numbers, and volumetric fractions of nanoparticles ranging from 1.47 × 103 to 1.47 × 106, 1 to 100, and 0 to 0.1, respectively. The impact of nanoparticle size on thermal characteristics and hydrodynamics was considered and evaluated. From the results, the volume fraction concentration of nanoparticles affects the flow shape and thermal performance in the case of a constant Reynolds number. Moreover, the effect of nanoparticles decreases with the increase of the Reynolds number. Besides this, with increasing the volume percentage of nanoparticles, the rate of heat transmission increases. It is worth noting that the presence of nanoparticles results in height convective heat transfer coefficient. On the other hand, the thickness of thermal boundary layers decreases with increasing Rayleigh number. The current investigation found that the (sinusoidal) temperature change significantly affects heat transfer. 相似文献
19.
Experimental research was conducted to understand heat transfer characteristic of pulsating heat pipe in this paper, and the PHP is made of high quality glass capillary tube. Under different fill ratio, heat transfer rate and many other influence factors, the flow patterns were observed in the start-up, transition and stable stage. The effects of heating position on heat transfer were discussed. The experimental results indicate that no annular flow appears in top heating condition. Under different fall ratios and heat transfer rate, the flow pattern in PHP is transferred from bulk flow to semi-annular flow and annular flow, and the performance of heat transfer is improved for down heating case. The experimental results indicate that the total heat resistant of PHP is increased with fill ratio, and heat transfer rate achieves optimum at filling rate 50%. But for pulsating heat pipe with changing diameters the thermal resistance is higher than that with uniform diameters. 相似文献
20.
热管及其换热器在烟气余热回收中的应用 总被引:4,自引:1,他引:4
简要介绍了热管技术,并分析了其传热机理。热管换热器具有许多独特的优点,已经获得了广泛的工业应用,应用主要集中在中低温余热资源回收利用方面,应完善高温热管,以拓宽热管换热器在高温余热资源中的应用。 相似文献