首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study is to examine the magnetohydrodynamic mixed convection Casson fluid flow over an inclined flat plate along with the heat source/sink. The present flow problem is considered under the assumption of the chemical reaction and thermal radiation impacts along with heat and mass transport. The leading nonlinear partial differential equations of the flow problem were renovated into the nonlinear ordinary differential equations (ODEs) with the assistance of appropriate similarity transformations and then we solved these ODEs with the employment of the bvp4c technique using the computational software MATLAB. The consequences of numerous leading parameters such as thermophoretic parameter, local temperature Grashof number, solutal Grashof number, suction parameter, magnetic field parameter, Prandtl number, chemical reaction parameter, Dufour number, Soret number, angle of inclination, radiation parameter, heat source/sink, and Casson parameter on the fluid velocity, temperature, and concentration profiles are discoursed upon  and presented through different graphs. Some important key findings of the present investigation are that the temperature of the Casson fluid becomes lower for local temperature Grashof number and solutal Grashof number. It is initiated that the Casson fluid parameter increases the velocity of the fluid whereas the opposite effect is noticed in the temperature profile. Higher estimation of Prandtl number and magnetic parameter elevated the Casson fluid concentration. Finally, the skin friction coefficient, Nusselt number, and Sherwood number are calculated and tabulated. It is also examined that the Nusselt number is weakened for both the Dufour number and Soret number but the skin fraction coefficient is greater for both the Dufour number and Soret number.  相似文献   

2.
In the present study, the influence of Hall and ion‐slip current on steady magnetohydrodynamics mixed convective, Ohmic heating, and viscous dissipative Casson fluid flow over an infinite vertical porous plate in the presence of Soret effect and chemical reaction are investigated. The modeling equations are transformed into dimensionless equations and then solved analytically through the multiple regular perturbation law. Computations are performed graphically to analyze the behavior of fluid velocity, temperature, concentration, skin friction, Nusselt number, and Sherwood number on the vertical plate with the difference of emerging physical parameters. This study reflects that the incremental values of Casson fluid parameter and Schmidt number lead to reduction in velocity. However, fluid velocity rises due to enhancement of ion‐slip parameter but an opposite effect is observed in case of Hall parameter. In addition, the Sherwood number declines with enhancing dissimilar estimators of the chemical reaction, Schmidt number, as well as Soret number.  相似文献   

3.
The aim of the current study is to explore the effects of heat and mass transfer on unsteady chemically reacted Casson liquid flow over an exponentially accelerated vertical plate in a porous medium. It is assumed that the bounding plate has varying temperatures as well as concentrations in a porous medium under a uniform magnetic field. This phenomenon is modeled in the form of a system of partial differential equations (PDEs) with boundary conditions. The governing dimensionless PDEs are solved using Laplace transform method for velocity, temperature, and concentration. The impact of nondimensional parameters, which are controlling the flow like Casson parameter, Soret number, magnetic parameter, heat generation parameter, Prandtl number, radiation parameter, and Schmidt number is analyzed through graphs. The incremental values of the Casson fluid parameter lead to a reduction in velocity and discovered that for large values of the Casson parameter, the fluid is near to the Newtonian fluid. Also, the Sherwood number increases with enhancing dissimilar estimators of the Schmidt and Soret numbers. A comparison has been made with the published work (Kataria et al.) for a particular case, which was in good agreement.  相似文献   

4.
This paper examined the contribution of MHD, thermal radiation, thermophoresis and Soret–Dufour mechanism on unsteady motion of Casson non-Newtonian fluid. The flow model which resulted in partial differential equations (PDES) was transformed into a dimensionless form of PDES using suitable quantities. The contributions of controlling flow parameters were graphically presented for velocity, temperature, and concentration. The quantities of engineering interest were calculated for flow parameters and presented using table. A considerable value of Soret parameter was noticed to elevate the skin friction and Sherwood number. Impact of the magnetic parameter has great impact on the motion of Casson fluid by lowering its motion. This is because as the value of magnetic parameter increases the Lorentz force added more strength and hereby slow down the motion of an electrically conducting fluids. The present outcomes were examined with previously published work and was in conformity with each other.  相似文献   

5.
This paper analyzes the Joule heating, Dufour number, and Soret number effects on hydromagnetic pulsatile flow of a Casson fluid in a vertical channel filled with a non-Darcian porous medium. The governing partial differential equations (PDEs) of the Casson fluid flow are transformed to ordinary differential equations (ODEs) using perturbation technique and solved by employing shooting method with Runge–Kutta (R–K) fourth-order technique using MATHEMATICA function NDSolve. The influence of Forchheimer number, Casson fluid parameter, Dufour number, radiation parameter, and Soret number on flow variables has been studied and the numerical results obtained are presented. The results reveal that the velocity rises with the rise of Darcy number, whereas it decreases for a given rise in the Forchheimer number. Furthermore, the temperature distribution enhances by increasing the Dufour number.  相似文献   

6.
In this article, we investigate a transient magnetohydrodynamic convective micropolar fluid flow over a semi-infinite vertical plate embedded in a porous medium in the presence of chemical reaction and thermal diffusion. The dimensionless governing equations are solved by adopting the regular perturbation technique. The impact of various parameters on the velocity, microrotation, temperature, concentration profiles, skin friction, Sherwood number, and Nusselt number over the boundary layer is analyzed using graphs. The fluid velocity and microrotation reduce under the effect of thermal diffusion and chemical reaction. Furthermore, concentration rises due to thermal diffusion (Soret) effect, but concentration falls under the effect of chemical reaction. It is found that the velocity and skin friction fall with enhancing value of magnetic parameter. But Sherwood number increases as the magnetic parameter increase.  相似文献   

7.
This work studies the heat and mass transfer characteristics of natural convection near a vertical wavy cone in a fluid saturated porous medium with Soret and Dufour effects. The surface of the wavy cone is kept at constant temperature and concentration. The governing equations are transformed into a set of coupled differential equations, and the obtained boundary layer equations are solved by the cubic spline collocation method. The heat and mass transfer characteristics are presented as functions of Soret parameter, Dufour parameter, half angle of the cone, Lewis number, buoyancy ratio, and dimensionless amplitude. Results show that an increase in the Dufour parameter tends to decrease the local Nusselt number, and an increase in the Soret parameter tends to decrease the local Sherwood number. Moreover, a greater half angle of the cone leads to a greater fluctuation of the local Nusselt and Sherwood numbers with the streamwise coordinates.  相似文献   

8.
This work studies the Soret and Dufour effects on the natural convection heat and mass transfer near a vertical truncated cone with variable wall temperature and concentration in a fluid-saturated porous medium. A coordinate transform is used to obtain the nonsimilar governing equations, and the transformed boundary layer equations are solved by the cubic spline collocation method. Results for local Nusselt number and the local Sherwood number are presented as functions of Soret parameters, Dufour parameters, surface temperature and concentration exponents, buoyancy ratios, and Lewis numbers. Results show that increasing the Dufour parameter tends to decrease the local Nusselt number, while it tends to increase the local Sherwood number. An increase in the Soret number leads to an increase in the Nusselt number and a decrease in the Sherwood number from a vertical truncated cone in a fluid-saturated porous medium. The local Nusselt number and the local Sherwood number of the truncated cones with higher surface temperature and concentration exponents are higher than those with lower exponents.  相似文献   

9.
In this study, we numerically explore the impact of varying viscosity and thermal conductivity on a magnetohydrodynamic flow problem over a moving nonisothermal vertical plate with thermophoretic effect and viscous dissipation. The boundary conditions and flow-regulating equations are converted into ordinary differential equations with the aid of similarity substitution. The MATLAB bvp4c solver is used to evaluate the numerical solution of the problem and it is validated by executing the numerical solution with previously published studies. The impacts of several factors, including the magnetic parameter, Eckert number, heat source parameter, thermal conductivity parameter, stratification parameter, Soret, Dufour, Prandtl number, and Schmidt number are calculated and shown graphically. Also, the skin friction coefficient, Nusselt number, and Sherwood number are calculated. Fluid velocity, temperature, and concentration significantly drop as the thermophoretic parameter and thermal stratification parameter increases. As thermal conductivity rises, it is seen that the velocity of the fluid and temperature inside the boundary layer rise as well. Also, the Soret effect drops temperature and concentration profile. The applications of this type of problem are found in the processes of nuclear reactors, corrosion of heat exchangers, lubrication theory, and so forth.  相似文献   

10.
This paper deals with an analysis of the Soret and Dufour effects on the boundary layer flow due to free convection heat and mass transfer over a vertical cylinder in a porous medium saturated with Newtonian fluids with constant wall temperature and concentration. A suitable coordination transformation is used to derive the similar governing boundary-layer equations, and the cubic spline collocation method is then employed to solve the similar governing boundary-layer equations. The variation of the Nusselt number and the Sherwood number with the Dufour parameter and the Soret parameter for various Lewis numbers and buoyancy ratios have been presented in this work. Results show that an increase in the Soret number leads to a decrease in the local Sherwood number and an increase in the local Nusselt number. The local Nusselt number tends to decrease as the Dufour parameter is increased. Moreover, an increase in the Lewis number enhances the effect of the Dufour parameter on the local Nusselt number.  相似文献   

11.
In the presence of Soret and Dufour effects, a numerical analysis is performed for an unstable magnetohydrodynamics convective flow of parabolic motion with variable temperature and concentration. The finite-difference method is used to solve the set of nondimensional governing equations with boundary conditions numerically. Graphs are used to investigate the effect of various physical characteristics on flow quantities. Variations in skin friction, Nusselt number, and Sherwood number are also examined using tables for physical curiosity. This study is unique in that it takes into account changeable temperature as well as concentration with Soret and Dufour effects. The magnetic parameter, Prandtl number, heat source, radiation parameter, Schmidt number, and chemical reaction parameter show a significant increase in skin friction, whereas the Grashof number, modified Grashof number, permeability parameter, radiation absorption parameter, Dufour number, and Soret number show the opposite trend. As the Soret number rises, the concentration rises as well, whereas the opposite is true for the Schmidt number and the chemical reaction parameter. The current study is highly supported by previously published data that have been verified.  相似文献   

12.
This work studies the Soret and Dufour effects on the free convection boundary layers over a vertical plate with variable wall heat and mass fluxes in a porous medium saturated with a non-Newtonian power law fluid with yield stress. The governing equations are transformed into a dimensionless form by the similarity transformation and then solved by a cubic spline collocation method. Results are presented for the local surface temperature and concentration for various parameters of the power law fluid with yield stress in porous media. An increase in the power law exponent decreases the local surface temperature and concentration, thus increasing the local Nusselt and Sherwood numbers. An increase in the Soret parameter tends to increase the local surface concentration, thus decreasing the local Sherwood number. Moreover, increasing the Dufour number increases the surface temperature and thus decreases the local Nusselt number.  相似文献   

13.
This work studies the Soret and Dufour effects on the boundary layer flow due to natural convection heat and mass transfer over a downward-pointing vertical cone in a porous medium saturated with Newtonian fluids with constant wall temperature and concentration. A similarity analysis is performed, and the obtained similar equations are solved by cubic spline collocation method. The effects of the Dufour parameter, Soret parameter, Lewis number, and buoyancy ratio on the heat and mass transfer characteristics have been studied. The local Nusselt number tends to decrease as the Dufour parameter is increased. The effect of the Dufour parameter on the local Nusselt number becomes more significant as the Lewis number is increased. Moreover, an increase in the Soret number leads to a decrease in the local Sherwood number and an increase in the local Nusselt number.  相似文献   

14.
This article presents the two-dimensional mixed convective MHD unsteady stagnation-point flow with heat and mass transfer on chemically reactive Casson fluid towards a vertical stretching surface. This fluid flow model is influenced by the induced magnetic field, thermal radiation, viscous dissipation, heat absorption, and Soret effect with convective boundary conditions and solved numerically by shooting technique. The calculations are accomplished by MATLAB bvp4c. The velocity, induced magnetic field, temperature, and concentration distributions are displayed by graphs for pertinent influential parameters. The numerical results for skin friction coefficient, rate of heat, and mass transfer are analyzed via tables for different influential parameters for both assisting and opposing flows. The results reveal that the enhancement of the unsteadiness parameter diminishes velocity and induced magnetic field but it rises temperature and concentration distributions. Moreover, higher values of magnetic Prandtl number enhance Nusselt number and skin friction coefficient, but it has the opposite impact on Sherwood number. We observe that the amplitude is higher in assisting flow compared to opposing flow for skin friction coefficient and Nusselt number whereas opposite trends are noticed for Sherwood number. Our model will be applicable to various magnetohydrodynamic devices and medical sciences.  相似文献   

15.
This article numerically studies the combined laminar free convection flow with thermal radiation and mass transfer of non-Newtonian power-law fluids along a vertical plate within a porous medium. The solution takes the diffusion-thermo (Dufour), thermal-diffusion (Soret), thermal radiation and power-law fluid index effects into consideration. The governing boundary layer equations along with the boundary conditions are first cast into a dimensionless form by a similarity transformation and the resulting coupled differential equations are then solved by the differential quadrature method (DQM). The effects of the radiation parameter R, the power-law index n, the Dufour number Df, and the Soret number Sr on the fluid flow, thermal and concentration fields are discussed in detail. The results indicate that when the buoyancy ratio of concentration to temperature is positive, N > 0, the local Nusselt number increases with an increase in the power-law index and the Soret number or a decrease in the radiation parameter and the Dufour number. In addition, the local Sherwood number for different values of the controlling parameters is also obtained.  相似文献   

16.
The free convection boundary layer flow over an arbitrarily inclined heated plate in a porous medium with Soret and Dufour effects is studied by transforming the governing equations into a universal form. The generalized equations can be used to derive the similarity solutions for limiting cases of horizontal and vertical plates and to calculate the heat and mass transfer characteristics between these two limiting cases. The heat and mass transfer characteristics are presented as functions of Soret parameter, Dufour parameter, inclination variable, Lewis number, and buoyancy ratio. Results show that an increase in the Dufour parameter tends to decrease the local heat transfer rate, and an increase in the Soret parameter tends to decrease the local mass transfer rate. As the inclination variable increases, the local Nusselt number and the local Sherwood number decrease from their respective values for horizontal plates, reach their respective minima, and then increase to their respective values for vertical plates. The minima are where the tangential and normal components of buoyancy force are comparable.  相似文献   

17.
This paper investigates the radiation and chemical reaction effects on Casson non‐Newtonian fluid towards a porous stretching surface in the presence of thermal and hydrodynamic slip conditions. The governing boundary layer conservation equations are normalized into nonsimilar form using similarity transformations. A numerical approach is applied to the resultant equations. The behavior of the velocity, temperature, concentration, as well as the skin friction coefficient, Nusselt number, and Sherwood number for various governing physical are discussed. Increasing the radiation parameter decreases the temperature. An increase in the rheological parameter (Casson parameter) induces an elevation in the skin friction coefficient, the heat and mass transfer rates. The larger the β values the closer the fluid is in behavior to a Newtonian fluid and further departs from plastic flow. Temperature of the fluid was found to decrease with increasing values of the Casson rheological parameter. The most important non‐Newtonian fluid possessing a yield value is the rheological Casson fluid, which finds significant applications in polymer processing industries, biomechanics, and chocolate food processing.  相似文献   

18.
Here, a study of steady, magnetohydrodynamic flow of incompressible, cold fluid around a moving plate with a non-Darcian porous medium in existence of heat source and nth-order chemical reaction incorporating Soret and Dufour effects is considered. MATLAB bvp4c technique is used to solve the prevailing equations. Variations in velocity, temperature and concentration are analysed. It is observed that the applicable parameters such as non-Darcy, Soret, Dufour, chemical reaction play a significant role in controlling the flow. Chemical reaction parameter reduces skin friction, heat transfer, and mass transfer while Eckert number enhances the mass transfer and skin friction.  相似文献   

19.
A theoretical analysis is made for steady fully developed free convection and mass transfer flow near an infinite vertical moving porous plate by taking into consideration the first‐order chemical reaction and Dufour effects. The mathematical model responsible for the present physical situation is based on the nonlinear density variation with temperature as well as nonlinear density variation with concentration. Exact solutions are derived for heat mass and momentum equations under relevant boundary conditions. The dimensionless velocity, temperature, and concentration are presented in terms of exponential functions. The impact of controlling parameters such as Dufour number (diffusion thermo effect), chemical reaction parameter, Prandlt number, Schmidt number, on velocity, temperature, Nusselt number, and skin friction are discussed with the aid of line graphs, contours, and tables. The analysis of the result shows that Nusselt number, skin friction, and velocity increases with increase in Dufour number. Furthermore, velocity and skin friction are higher in case of nonlinear convection in comparison to linear convection.  相似文献   

20.
An attempt has been made to explore Hall and ion-slip effects on an unsteady magnetohydrodynamic rotating flow of an electrically conducting, viscous, incompressible, and optically thick radiating Jeffrey fluid past an impulsively vertical moving porous plate. Analytical solutions of the governing equations are obtained by Laplace transform technique. The analytical expressions for skin friction, Nusselt number, and Sherwood number are also evaluated. The velocity, temperature, and concentration distributions are displayed graphically in detail. From engineering point of view, the changes in skin friction, Nusselt number, and Sherwood number are observed with the computational results presented in a tabular manner. It is observed that the effects of rotation and Hall current tend to accelerate secondary velocity and decelerate primary velocity throughout the boundary layer region. Thermal and concentration buoyancy forces tend to accelerate both velocity components. Thermal radiation and thermal diffusion tend to enhance fluid temperature throughout the boundary layer region. Rotation and Jeffrey fluid parameters tend to enhance both stress components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号