首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到1条相似文献,搜索用时 0 毫秒
1.
Present research article investigate the heat and mass transfer characteristics of unsteady magnetohydrodynamic Casson nanofluid flow between two parallel plates under the influence of viscous dissipation and first order homogeneous chemical reaction effects. The impacts of thermophoresis and Brownian motion are accounted in the nanofluid model to disclose the salient features of heat and mass transport phenomena. The present physical problem is examined under the presence of Lorentz forces to investigate the effects of magnetic field. Further, the viscous and Joule dissipation effects are considered to describe the heat transfer process. The non‐Newtonian behaviour of Casson nanofluid is distinguished from those of Newtonian fluids by considering the well‐established rheological Casson fluid model. The two‐dimensional partial differential equations governing the unsteady squeezing flow of Casson nanofluid are coupled and highly nonlinear in nature. Thus, similarity transformations are imposed on the conservation laws to obtain the nonlinear ordinary differential equations. Runge‐Kutta fourth order integration scheme with shooting method and bvp4c techniques have been used to solve the resulting nonlinear flow equations. Numerical results have been obtained and presented in the form of graphs and tables for various values of physical parameters. It is noticed from present investigation that, the concentration field is a decreasing function of thermophoresis parameter. Also, concentration profile enhances with raising Brownian motion parameter. Further, the present numerical results are compared with the analytical and semianalytical results and found to be in good agreement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号