首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 848 毫秒
1.
In recent decades, human carbonic anhydrase inhibitors (hCAIs) have emerged as an important therapeutic class with various applications including antiglaucoma, anticonvulsants, and anticancer agents. Herein, a novel series of indole-based benzenesulfonamides were designed, synthesized, and biologically evaluated as potential hCAIs. A regioisomerism of the sulfonamide moiety was carried out to afford a total of fifteen indole-based benzenesulfonamides possessing different amide linkers that enable the ligands to be flexible and develop potential H-bond interaction(s) with the target protein. The activity of the synthesized compounds was evaluated against four hCA isoforms (I, II, IX and, XII). Compounds 2b, 2c, 2d, 2f, 2h and 2o exhibited potent and selective profiles over the hCA II isoform with Ki values of 7.3, 9.0, 7.1, 16.0, 8.6 and 7.5 nM, respectively. Among all, compound 2a demonstrated the most potent inhibition against the hCA II isoform with an inhibitory constant (Ki) of 5.9 nM, with 13-, 34-, and 9-fold selectivity for hCA II over I, IX and XII isoforms, respectively. Structure–activity relationship data attained for various substitutions were rationalized. Furthermore, a molecular docking study gave insights into both inhibitory activity and selectivity of the target compounds. Accordingly, this report presents a successful scaffold hoping approach that reveals compound 2a as a highly potent and selective indole-based hCA II inhibitor worthy of further investigation.  相似文献   

2.
We report novel molecules incorporating the nontoxic squalene scaffold and different carbonic anhydrase inhibitors (CAIs). Potent inhibitory action, in the low-nanomolar range, was detected against isoforms hCA II for sulfonamide derivatives, which proved to be selective against this isoform over the tumor-associate hCA IX and XII isoforms. On the other hand, coumarin derivatives showed weak potency but high selectivity against the tumor-associated isoform CA IX. These compounds are interesting candidates for preclinical evaluation in glaucoma or various tumors in which the two enzymes are involved. In addition, an in silico study of inhibitor-bound hCA II revealed extensive interactions with the hydrophobic pocket of the active site and provided molecular insights into the binding properties of these new inhibitors.  相似文献   

3.
A series of coumarin-thiourea hybrids ( 4 a – o ) has been synthesized, and the compounds have been evaluated against the tumour associated transmembrane isoform, human (h) carbonic anhydrase (CA) hCA IX and the less-explored cytosolic isoform, hCA XIII. All compounds exhibited potent inhibition of both isoforms, with KI values of <100 nM against hCA IX. Compound 4 b was the best inhibitor (KI=78.5 nM). All the compounds inhibited hCA XIII in the low-nanomolar to sub-micromolar range, with compound 4 b again showing the best inhibition (KI=76.3 nM). With compound 4 b as a lead, more-selective inhibitors of hCA IX and hCA XIII or dual hCA IX/XIII inhibitors might be developed.  相似文献   

4.
Owing to severe allergic reactions (anaphylaxis) and resistance exhibited by sulfonamide-based carbonic anhydrase (CA) inhibitors, non-classical or non-sulfonamide CA inhibitors are gaining increased attention by medicinal chemists. In this context, we report the design and synthesis of 30 new non-sulfonamide sulfocoumarin derivatives as CA inhibitors. They were investigated against hCA I and II (cytosolic isozymes) as well as hCA IX and XII (transmembrane, tumor-associated enzymes). All compounds showed prominent selectivity for the tumor-associated isoenzymes hCA IX and XII over the cytosolic isoenzymes hCA I and II. Among all synthesized compounds, 1-(2,2-dioxidobenzo[e][1,2]oxathiin-6-yl)-3-(o-tolyl)urea( 5 j )and1-(3-fluorophenyl)-3-(8-methoxy-2,2-dioxidobenzo[e][1,2]oxathiin-6-yl)urea( 5 q )were found to be more potent and to have better inhibition constant values against hCA IX than the standard acetazolamide (AAZ), with Ki values of 23.6 and 23.3 nM, respectively. All other compounds were found to be active under Ki=920 nM against hCA IX and XII.This study provides a new perspective for the future development of non-sulfonamide derivatives as selective CA inhibitors.  相似文献   

5.
With the aim to develop potent and selective human carbonic anhydrase inhibitors (hCAIs), we synthesized 4‐sulfamoylphenyl/sulfocoumarin benzamides (series 5 a – r and series 7 a – q ) and evaluated their inhibition profiles against five isoforms of the zinc‐containing human carbonic anhydrase (hCA, EC 4.2.1.1): cytosolic hCA I and II, and the transmembrane isozymes hCA IV, IX, and XII. Compounds 5 a – r were found to selectively inhibit hCA II in the nanomolar range, while being less effective against the other hCA isoforms. As noted from the literature, sulfocoumarin (1,2‐benzoxathiine 2,2‐dioxide) acts as a “prodrug” inhibitor and is hydrolyzed by the esterase activity of hCA to form 2‐hydroxyphenylvinylsulfonic acid, which thereafter binds to the enzyme in a manner similar to that of coumarins and sulfoxocoumarins. All these sulfocoumarins (compounds 7 a – q ) were found to be very weak or ineffective as inhibitors of the housekeeping off‐target hCA isoforms I and II, and effectively inhibited the transmembrane tumor‐associated isoforms IX and XII in the high nanomolar to micromolar ranges. Further structural modifications of these molecules could be useful for the development of effective hCA inhibitors used for the treatment of glaucoma, epilepsy, and cancer.  相似文献   

6.
Carbonic anhydrases (CAs, EC 4.2.1.1) catalyze the essential reaction of CO2 hydration in all living organisms, being actively involved in the regulation of a plethora of patho/physiological conditions. A series of chromene-based sulfonamides were synthesized and tested as possible CA inhibitors. Their inhibitory activity was assessed against the cytosolic human isoforms hCA I, hCA II and the transmembrane hCA IX and XII. Several of the investigated derivatives showed interesting inhibition activity towards the tumor associate isoforms hCA IX and hCA XII. Furthermore, computational procedures were used to investigate the binding mode of this class of compounds, within the active site of hCA IX.  相似文献   

7.
We describe the synthesis of a series of thiadiazolyl-benzenesulfonamide derivatives carrying an aromatic tail linked by an amide linker ( 12–34 ), as human carbonic anhydrase (hCA) inhibitors. These thiadiazol derivatives were evaluated against four physiologically relevant CA isoforms (hCA I, II, IX, and XII), and demonstrated intriguing inhibitory activity against CA II with Ki values in the range of 2.4–31.6 nM. Besides hCA II, also hCA XII activity was potently inhibited by some of the derivatives (Ki=1.5–88.5 nM), producing dual inhibitors of both isoforms. Notably, compound 17 was the most potent dual CA II (Ki=3.1 nM) and XII (Ki=1.5 nM) inhibitor with a significant selectivity ratio over CA I and IX isoforms. In conclusion, although all compounds exhibited preferential activity towards hCA II, the nature of the substituents at the tail part of the main scaffold influenced the activity and selectivity toward other isoforms.  相似文献   

8.
A series of 1,3,5-triazinyl aminobenzenesulfonamides substituted by aminoalcohol, aminostilbene, and aminochalcone structural motifs was synthesized as potential human carbonic anhydrase (hCA) inhibitors. The compounds were evaluated on their inhibition of tumor-associated hCA IX and hCA XII, hCA VII isoenzyme present in the brain, and physiologically important hCA I and hCA II. While the test compounds had only a negligible effect on physiologically important isoenzymes, many of the studied compounds significantly affected the hCA IX isoenzyme. Several compounds showed activity against hCA XII; (E)-4-{2-[(4-[(2,3-dihydroxypropyl)amino]-6-[(4-styrylphenyl)amino]-1,3,5-triazin-2-yl)amino]ethyl}benzenesulfonamide (31) and (E)-4-{2-[(4-[(4-hydroxyphenyl)amino]-6-[(4-styrylphenyl)amino]-1,3,5-triazin-2-yl)amino]ethyl}benzenesulfonamide (32) were the most effective inhibitors with KIs = 4.4 and 5.9 nM, respectively. In addition, the compounds were tested against vancomycin-resistant Enterococcus faecalis (VRE) isolates. (E)-4-[2-({4-[(4-cinnamoylphenyl)amino]-6-[(4-hydroxyphenyl)amino]-1,3,5-triazin-2-yl}amino)ethyl]benzenesulfonamide (21) (MIC = 26.33 µM) and derivative 32 (MIC range 13.80–55.20 µM) demonstrated the highest activity against all tested strains. The most active compounds were evaluated for their cytotoxicity against the Human Colorectal Tumor Cell Line (HCT116 p53 +/+). Only 4,4’-[(6-chloro-1,3,5-triazin-2,4-diyl)bis(iminomethylene)]dibenzenesulfonamide (7) and compound 32 demonstrated an IC50 of ca. 6.5 μM; otherwise, the other selected derivatives did not show toxicity at concentrations up to 50 µM. The molecular modeling and docking of active compounds into various hCA isoenzymes, including bacterial carbonic anhydrase, specifically α-CA present in VRE, was performed to try to outline a possible mechanism of selective anti-VRE activity.  相似文献   

9.
Carbonic anhydrases (CAs) are implicated in a wide range of diseases, including the upregulation of isoforms CA IX and XII in many aggressive cancers. However, effective inhibition of disease‐implicated CAs should minimally affect the ubiquitously expressed isoforms, including CA I and II, to improve directed distribution of the inhibitors to the cancer‐associated isoforms and reduce side effects. Four benzenesulfonamide‐based inhibitors were synthesized by using the tail approach and displayed nanomolar affinities for several CA isoforms. The crystal structures of the inhibitors bound to a CA IX mimic and CA II are presented. Further in silico modeling was performed with the inhibitors docked into CA I and XII to identify residues that contributed to or hindered their binding interactions. These structural studies demonstrated that active‐site residues lining the hydrophobic pocket, especially positions 92 and 131, dictate the positional binding and affinity of inhibitors, whereas the tail groups modulate CA isoform specificity. Geometry optimizations were performed on each ligand in the crystal structures and showed that the energetic penalties of the inhibitor conformations were negligible compared to the gains from active‐site interactions. These studies further our understanding of obtaining isoform specificity when designing small molecule CA inhibitors.  相似文献   

10.
Two novel sulfaguanidine series, six N-(N,N′-dialkyl/dibenzyl-carbamimidoyl) benzenesulfonamide derivatives and nine N-(N-alkyl/benzyl-carbamimidoyl) benzenesulfonamide derivatives, were obtained by desulfidative amination of easily accessible dimethyl arylsulfonylcarbonimidodithioates under catalyst- and base-free conditions. The newly synthesized compounds were tested for the inhibition of four different isozymes of human carbonic anhydrase (hCA I, II, IX and XII, EC 4.2.1.1). Both series reported here were inactive against the off-target isozymes hCA I and II (Ki>100 μM). Interestingly, all investigated compounds inhibited both target isozymes hCA IX and XII in the submicromolar to micromolar ranges in which Ki values spanned from 0.168 to 0.921 μM against hCA IX and from 0.335 to 1.451 μM against hCA XII. The results indicated that N-(N-alkyl/benzyl-carbamimidoyl) benzenesulfonamides were slightly more potent inhibitors than N-(N,N′-dialkyl/dibenzyl-carbamimidoyl) benzenesulfonamides. Among the evaluated compounds, N-n-octyl-substituted N-carbamimidoylbenzenesulfonamide showed the most significant activity with a Ki value of 0.168 μM against hCA IX, which was four-fold more selective toward this isozyme versus hCA XII. Again, another derivative from N-(N-alkyl/benzyl-carbamimidoyl) benzenesulfonamide series, N-p-methylbenzyl-substituted N-carbamimidoylbenzenesulfonamide, demonstrated superior inhibitory activity against hCA XII with a Ki value of 0.335 μM.  相似文献   

11.
The synthesis and carbonic anhydrase (CA, EC 4.2.1.1) inhibitory activity of two series of aromatic sulfonamides and their Cu(II) derivatives, incorporating metal-complexing moieties of the DTPA, DOTA, and TETA type are reported. The new compounds were designed in such a way as to possess high affinity for Cu(II) ions, exploiting four pendant carboxylate moieties in the DTPA derivatives, as well as the cyclen/cyclam macrocyles, and three pendant acetate moieties in the DOTA and TETA derivatives. The new derivatives showed modest inhibition of the cytosolic isoform CA I (K(I) values in the range of 66-2130 nM), were better CA II inhibitors (K(I) values in the range of 21-360 nM), and excellent inhibitors of the tumor-associated isoform CA IX (K(I) values in the range of 4.1-110 nM), with selectivity ratios for the inhibition of the tumor (CA IX) over the cytosolic (CA II) isozyme in the range of 10.74-20.88 for the best derivatives. Copper complexes were more inhibitory than the corresponding ligand sulfonamides, and showed membrane impermeability, thus, having the possibility to specifically target the transmembrane CA IX that has an extracellular active site. Incorporation of radioactive copper isotopes in this type of CA inhibitor may lead to interesting diagnostic/therapeutic applications for such compounds.  相似文献   

12.
A study on the activity of selenocarbamates as a novel chemotype acting as carbonic anhydrase (CA, EC 4.2.1.1) inhibitors is reported. Undergoing CA-mediated hydrolysis, selenocarbamates release selenolates behaving as zinc binding groups and effectively inhibiting CAs. A series of selenocarbamates characterised by high molecular diversity and complexity have been studied against different human CA isoforms such as hCA I, II, IX and XII. Selenocarbamates behave as masked selenols with potential biological applications as prodrugs for CAs inhibition-based strategies. X-ray studies provided insights into the binding mode of this novel class of CA inhibitors.  相似文献   

13.
Primary sulfonamide derivatives with various heterocycles represent the most widespread group of potential human carbonic anhydrase (hCA) inhibitors with high affinity and selectivity towards specific isozymes from the hCA family. In this work, new 4-aminomethyl- and aminoethyl-benzenesulfonamide derivatives with 1,3,5-triazine disubstituted with a pair of identical amino acids, possessing a polar (Ser, Thr, Asn, Gln) and non-polar (Ala, Tyr, Trp) side chain, have been synthesized. The optimized synthetic, purification, and isolation procedures provided several pronounced benefits such as a short reaction time (in sodium bicarbonate aqueous medium), satisfactory yields for the majority of new products (20.6–91.8%, average 60.4%), an effective, well defined semi-preparative RP-C18 liquid chromatography (LC) isolation of desired products with a high purity (>97%), as well as preservation of green chemistry principles. These newly synthesized conjugates, plus their 4-aminobenzenesulfonamide analogues prepared previously, have been investigated in in vitro inhibition studies towards hCA I, II, IV and tumor-associated isozymes IX and XII. The experimental results revealed the strongest inhibition of hCA XII with low nanomolar inhibitory constants (Kis) for the derivatives with amino acids possessing non-polar side chains (7.5–9.6 nM). Various derivatives were also promising for some other isozymes.  相似文献   

14.
In this study, 22 novel compounds were designed and synthesized by acetamide bridge chains, among which 5 a – 5 k were monosubstituted compounds, and 6 a – 6 k were disubstituted. A series of biological evaluations was then carried out to determine the carbonic anhydrase inhibitory activity, neuroprotective effects and cytotoxicity of 5 a – 5 k and 6 a – 6 k . The results showed that some compounds could protect PC12 cells from sodium nitroprusside (SNP)-induced damage. In terms of the neuroprotection and inhibitory activity against carbonic anhydrase II, monosubstituted compounds were better than disubstituted. Compound 5 c exhibited better protective effect in PC12 cells than that of edaravone, and 5 c also showed less cytotoxicity. In addition, compound 5 c was found to be the most effective selective carbonic anhydrase II inhibitor (IC50=16.7 nM, CAI/CAII=54.3), which was similar to the inhibitory effect of acetazolamide. Moreover, the selectivity of compound 5 c was better than that of acetazolamide (IC50=12.0 nM, CAI/CAII=20.8). Molecular docking presented that the binding effect of compound 5 c with carbonic anhydrase II was superior to that of 5 c with carbonic anhydrase I and IX, which was consistent with the inhibitory results. Based on above findings, compound 5 c may be a potential candidate for selective carbonic anhydrase II inhibitor, and it had obviously neuroprotective effect and great advantages in drug safety.  相似文献   

15.
Substituted tri‐ and tetrafluorobenzenesulfonamides were designed, synthesized, and evaluated as high‐affinity and isoform‐selective carbonic anhydrase (CA) inhibitors. Their binding affinities for recombinant human CA I, II, VA, VI, VII, XII, and XIII catalytic domains were determined by fluorescent thermal shift assay, isothermal titration calorimetry, and a stopped‐flow CO2 hydration assay. Variation of the substituents at the 2‐, 3‐, and 4‐positions yielded compounds with a broad range of binding affinities and isoform selectivities. Several 2,4‐substituted‐3,5,6‐trifluorobenzenesulfonamides were effective CA XIII inhibitors with high selectivity over off‐target CA I and CA II. 3,4‐Disubstituted‐2,5,6‐trifluorobenzenesulfonamides bound CAs with higher affinity than 2,4‐disubstituted‐3,5,6‐trifluorobenzenesulfonamides. Many such fluorinated benzenesulfonamides were found to be nanomolar inhibitors of CA II, CA VII, tumor‐associated CA IX and CA XII, and CA XIII. X‐ray crystal structures of inhibitors bound in the active sites of several CA isoforms provide structure–activity relationship information for inhibitor binding affinities and selectivity.  相似文献   

16.
Based on the strategy of the “tail approach”, 15 novel saccharide-modified sulfonamides were designed and synthesised. The novel compounds were evaluated as inhibitors of three human carbonic anhydrase (CA) isoforms, namely cytoplasmic CA II, transmembrane CA IX, and XII. Most of these compounds showed good activity against CAs and high topological polar surface area (TPSA) values, which had a positive effect on the selective inhibition of transmembrane isoforms CA IX and XII. In the in vitro activity studies, compounds 16a, 16b, and 16e reduced the viability of HT-29 and MDA-MB-231 cells with a high expression of CA IX under hypoxia. The inhibitory activity of compound 16e on the human osteosarcoma cell line MG-63 with a high expression of CA IX and XII was better than that of AZM. Moreover, high concentrations of compounds 16a and 16b reversed the acidification of the tumour microenvironment. In addition, compound 16a had a certain inhibitory effect on the migration of MDA-MB-231 cells. All the above results indicate that the saccharide-modified sulfonamide has further research value for the development of CA IX inhibitors.  相似文献   

17.
This review describes recent progress in the design and development of inhibitors of human carbonic anhydrase IX (CA IX) based on space-filling carborane and cobalt bis(dicarbollide) clusters. CA IX enzyme is known to play a crucial role in cancer cell proliferation and metastases. The new class of potent and selective CA IX inhibitors combines the structural motif of a bulky inorganic cluster with an alkylsulfamido or alkylsulfonamido anchor group for Zn2+ ion in the enzyme active site. Detailed structure-activity relationship (SAR) studies of a large series containing 50 compounds uncovered structural features of the cluster-containing inhibitors that are important for efficient and selective inhibition of CA IX activity. Preclinical evaluation of selected compounds revealed low toxicity, favorable pharmacokinetics and ability to reduce tumor growth. Cluster-containing inhibitors of CA IX can thus be considered as promising candidates for drug development and/or for combination therapy in boron neutron capture therapy (BNCT).  相似文献   

18.
New ligand, namely, 5, 11, 17, 23-tetrakis-((p-chlorophenyl) azo)-25,26,27,28-tetrakis ((dimethylthio carbamoyl)oxy) thiacalix[4]arene (CADTTCA), has been investigated for separation and recovery of Pd(II) through solvent extraction technique. Experimental parameters such as contact time, diluents, effect of H+ and Cl? concentration, and acid durability have been thoroughly investigated. The loading capacity toward Pd(II) was determined to be 113 mg/L using 0.25 mM CADTTCA. The extractant showed high selectivity and extractability for Pd(II) than the other metal ions present in automotive catalyst residue (ACR) solution containing platinum group (PGMs) metal ions (i.e., Pd(II), Pt(IV), Rh(II), La(III), Al(III) and Ce(III)). The recovery percentage of Pd(II) was 98% after five extraction-scrubbing-stripping cycles. The probable extraction mechanisms were established through the FT-IR spectral analysis.  相似文献   

19.
A series of saccharide-modified thiadiazole sulfonamide derivatives has been designed and synthesized by the “tail approach” and evaluated for inhibitory activity against carbonic anhydrases II, IX, and XII. Most of the compounds showed high topological polar surface area (TPSA) values and excellent enzyme inhibitory activity. The impacts of some compounds on the viability of HT-29, MDA-MB-231, and MG-63 human cancer cell lines were examined under both normoxic and hypoxic conditions, and they showed certain inhibitory effects on cell viability. Moreover, it was found that the series of compounds had the ability to raise the pH of the tumor cell microenvironment. All the results proved that saccharide-modified thiadiazole sulfonamides have important research prospects for the development of CA IX inhibitors.  相似文献   

20.
Various chelating ligands have been investigated for the cloud point extraction of several metal ions. However, limited studies on the use of the Schiff base ligands have been reported. In this work, cloud point extraction behavior of copper(II) with N,N′‐bis(salicylaldehyde)Ethylenediimine Schiff base chelating ligand, (H2SALEN), was investigated in aqueous concentrated sulphate medium. The extraction process used is based on the formation of hydrophobic H2SALEN–copper(II) complexes that are solubilized in the micellar phase of a non‐ionic surfactant, i.e. ethoxylated (9.5EO) tert‐butylphenol. The copper(II) complexes are then extracted into the surfactant‐rich phase above cloud point temperature. Different parameters affecting the extraction process of Cu(II), such as equilibrium pH, extractant concentration, and non‐ionic surfactant concentration were explored. The extraction of Cu(II) was studied in the pH range of 2–11. The results obtained showed that it was profoundly influenced by the pH of the aqueous medium. The concentration factor, Cf, of about 17 with extraction efficiency of E % ≈100 was achieved. The stoichiometry of the extracted complex of copper(II) was ascertained by the Yoe–Jones method to give a composition of 1:1 (Cu:H2L). The optimum conditions of the extraction‐removal have been established as the following: (1) 1.86 × 10?3 mol/L ligand; (2) 3 wt% surfactant; (3) pH of 8 (4) 0.5 mol/L Na2SO4 and (5) temperature of 60 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号