首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper proposes a wavelet-based cerebellar model arithmetic controller neural network (called WCMAC) and develops an adaptive supervisory WCMAC control (SWC) scheme for nonlinear uncertain systems. The WCMAC is modified from the traditional CMAC for obtaining high approximation accuracy and convergent rate using the advantages of wavelet functions and fuzzy TSK-model. For nonlinear uncertain systems, a PD-type WCMAC controller with filter is constructed to approximate an ideal control signal. The corresponding adaptive supervisory controller is used to recover the residual of approximation error. Finally, the adaptive SWC scheme is applied to chaotic system identification and control including Mackey–Glass time-series prediction, control of inverted pendulum system, and control of Chua circuit system. These demonstrate the effectiveness of our adaptive SWC approach for nonlinear uncertain systems.  相似文献   

2.
Adaptive CMAC-based supervisory control for uncertain nonlinear systems.   总被引:7,自引:0,他引:7  
An adaptive cerebellar-model-articulation-controller (CMAC)-based supervisory control system is developed for uncertain nonlinear systems. This adaptive CMAC-based supervisory control system consists of an adaptive CMAC and a supervisory controller. In the adaptive CMAC, a CMAC is used to mimic an ideal control law and a compensated controller is designed to recover the residual of the approximation error. The supervisory controller is appended to the adaptive CMAC to force the system states within a predefined constraint set. In this design, if the adaptive CMAC can maintain the system states within the constraint set, the supervisory controller will be idle. Otherwise, the supervisory controller starts working to pull the states back to the constraint set. In addition, the adaptive laws of the control system are derived in the sense of Lyapunov function, so that the stability of the system can be guaranteed. Furthermore, to relax the requirement of approximation error bound, an estimation law is derived to estimate the error bound. Finally, the proposed control system is applied to control a robotic manipulator, a chaotic circuit and a linear piezoelectric ceramic motor (LPCM). Simulation and experimental results demonstrate the effectiveness of the proposed control scheme for uncertain nonlinear systems.  相似文献   

3.
This study aims to propose a more efficient control algorithm for the chaotic system synchronization. In this study, a novel wavelet cerebellar model articulation controller (WCMAC) is proposed, which incorporates the wavelet decomposition property with a cerebellar model articulation controller (CMAC). This WCMAC is a generalization network; in some special cases, it can be reduced to a wavelet neural network, a neural network and a conventional CMAC. Then, an adaptive wavelet cerebellar model articulation control system (AWCCS) is proposed to synchronize a unified chaotic system. In this AWCCS, WCMAC is the main controller utilized to mimic a perfect controller and the parameters of WCMAC are online adjusted by the derived adaptive laws; and a compensation controller is designed to dispel the residual of the approximation error for achieving $ H^{\infty } $ robust performance. The derived AWCCS is then applied to the chaotic system synchronization control. Finally, the effectiveness of the proposed control system is demonstrated through simulation results.  相似文献   

4.
This study uses a Mexican hat wavelet membership function for a cerebellar model articulation controller (CMAC) to develop a more efficient adaptive controller for multiple input multiple output (MIMO) uncertain nonlinear systems. The main controller is called the adaptive Mexican hat wavelet CMAC (MWCMAC), and an auxiliary controller is used to remove the residual error. For the MWCMAC, the online learning laws are derived from the gradient descent method. In addition, the learning rate values are very important and have a great impact on the performance of the control system; however, they are difficult to choose accurately. Therefore, a modified social ski driver (SSD) algorithm is proposed to find optimal learning rates for the control parameters. Finally, a magnetic ball levitation system and a nine-link biped robot are used to illustrate the effectiveness of the proposed SSD-based MWCMAC control system. The comparisons with other existing control algorithms have shown the superiority of the proposed control system.  相似文献   

5.
The advantage of using cerebellar model articulation control (CMAC) network has been well documented in many applications. However, the structure of a CMAC network which will influence the learning performance is difficult to select. This paper proposes a dynamic structure CMAC network (DSCN) which the network structure can grow or prune systematically and their parameters can be adjusted automatically. Then, an adaptive dynamic CMAC neural control (ADCNC) system which is composed of a computation controller and a robust compensator is proposed via second-order sliding-mode approach. The computation controller containing a DSCN identifier is the principal controller and the robust compensator is designed to achieve L2 tracking performance with a desired attenuation level. Moreover, a proportional–integral (PI)-type adaptation learning algorithm is derived to speed up the convergence of the tracking error in the sense of Lyapunov function and Barbalat’s lemma, thus the system stability can be guaranteed. Finally, the proposed ADCNC system is applied to control a chaotic system. The simulation results are demonstrated that the proposed ADCNC scheme can achieve a favorable control performance even under the variations of system parameters and initial point.  相似文献   

6.
An adaptive cerebellar model articulation controller (CMAC) is proposed for command to line-of-sight (CLOS) missile guidance law design. In this design, the three-dimensional (3-D) CLOS guidance problem is formulated as a tracking problem of a time-varying nonlinear system. The adaptive CMAC control system is comprised of a CMAC and a compensation controller. The CMAC control is used to imitate a feedback linearization control law and the compensation controller is utilized to compensate the difference between the feedback linearization control law and the CMAC control. The online adaptive law is derived based on the Lyapunov stability theorem to learn the weights of receptive-field basis functions in CMAC control. In addition, in order to relax the requirement of approximation error bound, an estimation law is derived to estimate the error bound. Then the adaptive CMAC control system is designed to achieve satisfactory tracking performance. Simulation results for different engagement scenarios illustrate the validity of the proposed adaptive CMAC-based guidance law.  相似文献   

7.
Chaos control can be applied in the vast areas of physics and engineering systems, but the parameters of chaotic system are inevitably perturbed by external inartificial factors and cannot be exactly known. This paper proposes an adaptive neural complementary sliding-mode control (ANCSC) system, which is composed of a neural controller and a robust compensator, for a chaotic system. The neural controller uses a functional-linked wavelet neural network (FWNN) to approximate an ideal complementary sliding-mode controller. Since the output weights of FWNN are equipped with a functional-linked type form, the FWNN offers good learning accuracy. The robust compensator is designed to eliminate the effect of the approximation error introduced by the neural controller upon the system stability in the Lyapunov sense. Without requiring preliminary offline learning, the parameter learning algorithm can online tune the controller parameters of the proposed ANCSC system to ensure system stable. Finally, it shows by the simulation results that favorable control performance can be achieved for a chaotic system by the proposed ANCSC scheme.  相似文献   

8.
In the conventional CMAC-based adaptive controller design, a switching compensator is designed to guarantee system stability in the Lyapunov stability sense but the undesirable chattering phenomenon occurs. This paper proposes a CMAC-based smooth adaptive neural control (CSANC) system that is composed of a neural controller and a saturation compensator. The neural controller uses a CMAC neural network to online mimic an ideal controller and the saturation compensator is designed to dispel the approximation error between the ideal controller and neural controller without any chattering phenomena. The parameter adaptive algorithms of the CSANC system are derived in the sense of Lyapunov stability, so the system stability can be guaranteed. Finally, the proposed CSANC system is applied to a Chua’s chaotic circuit and a DC motor driver. Simulation and experimental results show the CSANC system can achieve a favorable tracking performance. It should be emphasized that the development of the proposed CSANC system doesn’t need the knowledge of the system dynamics.  相似文献   

9.
一种自适应CMAC在交流励磁水轮发电系统中仿真研究   总被引:2,自引:0,他引:2  
李辉 《控制与决策》2005,20(7):778-781
在分析常规CMAC结构的基础上,针对一类非线性、参数时变和不确定的控制系统,提出了一种自适应CMAC神经网络的控制器.该控制器以系统动态误差和给定信号量作为CMAC的激励信号,并与自适应线性神经元网络相结合构成系统的复合控制.为了验证其有效性,将其应用到交流励磁水轮发电机系统的多变量非线性控制中,并与常规的PID控制效果进行了比较.仿真结果表明,该控制器具有较强鲁棒性和自适应能力,控制品质优良。  相似文献   

10.
The conventional cerebellar model articulation controllers (CMAC) learning scheme equally distributes the correcting errors into all addressed hypercubes, regardless of the credibility of those hypercubes. This paper presents the adaptive fault-tolerant control scheme of non-linear systems using a fuzzy credit assignment CMAC neural network online fault learning approach. The credit assignment concept is introduced into fuzzy CMAC weight adjusting to use the learned times of addressed hypercubes as the credibility of CMAC. The correcting errors are proportional to the inversion of learned times of addressed hypercubes. With this fault learning model, the learning speed of fault can be improved. After the unknown fault is estimated, online, by using the fuzzy credit assignment CMAC, the effective control law reconfiguration strategy based on the sliding mode control technique is used to compensate for the effect of the fault. The proposed fault-tolerant controller adjusts its control signal by adding a corrective sliding mode control signal to confine the system performance within a boundary layer. The numerical simulations demonstrate the effectiveness of the proposed CMAC algorithm and fault-tolerant controller.  相似文献   

11.
本文提出了一种基于小脑模型关节控制器(CMAC)的评论–策略家算法,设计不依赖模型的跟踪控制器,来解决机器人的跟踪问题.该跟踪控制器包含位置控制器和角度控制器,其输出分别为线速度和角速度.位置控制器由评价单元和策略单元组成,每个单元都采用CMAC算法,按改进δ学习规则在线调整权值.策略单元产生控制量;评判单元在线调整策略单元学习速率.以双轮驱动自主移动机器人为例,与固定学习速率CMAC做比较,仿真数据表明,基于CMAC的评论–策略家算法的跟踪控制器具有跟踪速度快,自适应能力强,配置参数范围宽,不依赖数学模型等特点.  相似文献   

12.
应用信度分配的模糊CMAC实现非线性系统的容错控制   总被引:4,自引:1,他引:4  
朱大齐  孔敏 《自动化学报》2006,32(3):329-336
The adaptive fault-tolerant control scheme of dynamic nonlinear system based on the credit assigned fuzzy CMAC neural network is presented. The proposed learning approach uses the learned times of addressed hypercubes as the credibility, the amounts of correcting errors are proportional to the inversion of the learned times of addressed hypercubes. With this idea, the learning speed can indeed be improved. Based on the improved CMAC learning approach and using the sliding control technique, the effective control law reconfiguration strategy is presented. Thesystem stability and performance are analyzed under failure scenarios. The numerical simulation demonstrates the effectiveness of the improved CMAC algorithm and the proposed fault-tolerant controller.  相似文献   

13.
First of all, an adaptive iterative learning control strategy is developed for a class of nonlinearly parameterized systems with two unknown time-varying parameters and one unknown time-varying delay. The proposed control law includes a PID-type feedback term in time domain and an adaptive learning term used to estimate the unknown time-varying vector in iteration domain. By constructing a Lyapunov-Krasovskii-like composite energy function, we prove the stability of the closed-loop system and the convergence of the tracking error. Then, the design idea is further extended to a broader class of systems with mixed parameters in which the unknown time-invariant vector is estimated by a PI-type learning law in time domain. The simulation results, for a time-delay chaotic system, confirm the effectiveness of the proposed control scheme.  相似文献   

14.
Intelligent adaptive control for MIMO uncertain nonlinear systems   总被引:3,自引:1,他引:2  
This paper investigates an intelligent adaptive control system for multiple-input–multiple-output (MIMO) uncertain nonlinear systems. This control system is comprised of a recurrent-cerebellar-model-articulation-controller (RCMAC) and an auxiliary compensation controller. RCMAC is utilized to approximate a perfect controller, and the parameters of RCMAC are on-line tuned by the derived adaptive laws based on a Lyapunov function. The auxiliary compensation controller is designed to suppress the influence of residual approximation error between the perfect controller and RCMAC. Finally, two MIMO uncertain nonlinear systems, a mass–spring–damper mechanical system and a Chua’s chaotic circuit, are performed to verify the effectiveness of the proposed control scheme. The simulation results confirm that the proposed intelligent adaptive control system can achieve favorable tracking performance with desired robustness.  相似文献   

15.
提出了一种自适应CMAC神经元网络控制器的结构. 该控制器的核心是一个两维的存贮区间, 它采用一个参考模型和直接自适应律来获得在线训练信号, 而相应存贮单元的更新采用一阶学习律. 最后以水轮机调速器仿真实验系统来检验它的控制性能, 并与普通的PID控制器比较, 结果证明, 该控制器有较强的学习能力及较强的鲁棒性.  相似文献   

16.
The adaptive output recurrent cerebellar model articulation control (AORCMAC) is an adaptive system with simple computation, good generalization capability and fast learning property. The proposed AORCMAC has superior capability to the conventional cerebellar model articulation controller (CMAC) in efficient learning mechanism and dynamic response. In this study, an intelligent backstepping tracking control system is proposed for wheeled inverted pendulums (WIPs) with unknown system dynamics and external disturbance. In this control system, an ABORCMAC is used to copy an ideal backstepping control (IBC), and a compensated controller is designed to compensate for difference between the IBC law and AORCMAC. Moreover, all adaptation laws of the proposed system are derived based on the Lyapunov stability analysis, the Taylor linearization technique, so that the stability of the closed-loop system can be guaranteed.  相似文献   

17.
This paper presents a robust adaptive fuzzy control algorithm for controlling unknown chaotic systems. The control approach encompasses a fuzzy system and a robust controller. The fuzzy system is designed to mimic an ideal controller, based on sliding-mode control. The robust controller is designed to compensate for the difference between the fuzzy controller and the ideal controller. The parameters of the fuzzy system, as well as uncertainty bound of the robust controller, are tuned adaptively. The adaptive laws are derived in the Lyapunov sense to guarantee the stability of the controlled system. Numerical simulations show the effectiveness of the proposed approach.  相似文献   

18.
研究了一种带有的CMAC神经网络的再励学习(RL)控制方法,以解决具有高度非线性的系统控制问题。研究的重点在于算法的简化以及具有连续输出的函数学习上。控制策略由两部分构成;再励学习控制器和固定增益常规控制器。前者用于学习系统的非线性,后者用于稳定系统。仿真结果表明,所提出的控制策略不仅是有效的,而且具有很高的控制精度。  相似文献   

19.
针对一类不确定仿射非线性系统的跟踪控制问题,提出一种基于干扰观测器的有限时间收敛backstepping控制方法.为增强小脑模型(CMAC)泛化和学习能力,将非对称高斯函数和模糊理论相结合,给出非对称模糊CMAC结构,设计干扰观测器实现系统未知复合干扰在线准确逼近;基于非对称模糊CMAC干扰观测器,给出有限时间收敛backstepping控制器设计步骤,利用Lyapunov稳定理论证明闭环系统稳定性,其中采用非线性微分器获取虚拟控制量滤波和微分信息以避免backstepping设计中的微分“膨胀问题”,设计辅助系统修正因微分器带来的误差对系统跟踪性能影响,引入基于障碍型函数的自适应滑模鲁棒项抑制复合干扰估计偏差对跟踪误差的影响;将所提方法应用于无人机飞行控制仿真实验,结果表明所提方法的有效性.  相似文献   

20.
This work presents a novel integral variable structure control (IVSC) that combines a cerebellar model articulation controller (CMAC) neural network and a soft supervisor controller for use in designing single-input single-output (SISO) nonlinear system. Based on the Lyapunov theorem, the soft supervisor controller is designed to guarantee the global stability of the system. The CMAC neural network is used to perform the equivalent control on IVSC, using a real-time learning algorithm. The proposed IVSC control scheme alleviates the dependency on system parameters and eliminates the chattering of the control signal through an efficient learning scheme. The CMAC-based IVSC (CIVSC) scheme is proven to be globally stable inasmuch all signals involved are bounded and the tracking error converges to zero. A numerical simulation demonstrates the effectiveness and robustness of the proposed controller.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号