首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
滚动轴承早期故障信号中原始冲击成分容易被强噪声淹没,故障特征提取难度较大。针对这一问题,提出了多点最优调整的最小熵解卷积(MOMEDA)与Teager能量算子相结合的滚动轴承故障诊断方法。利用MOMEDA算法对原始故障信号进行滤波处理,通过Teager能量算子增强解卷积信号中的冲击特征,对信号进行包络分析。通过对比包络谱中的主导频率与滚动轴承的故障特征频率判断故障位置,实现轴承的故障诊断。仿真数据与试验数据分析结果表明,该方法能够有效提取故障信号中的特征信息,具有一定的实用性。  相似文献   

2.
针对滚动轴承(rolling element bearings, REBs)早期故障振动信号冲击成分微弱,受噪声影响故障特征难以提取,提出了基于自相关和Teager能量算子增强的滚动轴承微弱故障特征提取法。利用自相关计算和经验模态分解(empirical mode decomposition, EMD),分别实现轴承振动信号整个频带随机噪声和低频噪声的抑制,突出故障冲击周期。同时,提出基于内禀模态函数(intrinsic mode function, IMF)能量比加权的互相关系数-峭度指标用于筛选最优IMF进行信号重构,强化重构信号中的故障信息。对重构信号作用Teager能量算子(Teager energy operator, TEO),得到故障冲击特征增强的瞬时能量序列,通过功率谱分析提取轴承故障特征频率。内圈故障仿真信号和滚动体故障实测信号分析表明,该方法能够有效抑制轴承振动信号噪声,对早期故障的微弱特征有显著增强作用。  相似文献   

3.
对难以提取处于微弱故障状态的滚动轴承非线性、非平稳时变特性振动信号中故障特征频率的问题,提出基于VMD-SVD能量标准谱-Teager能量算子联合诊断方法。首先,对预处理后轴承微弱故障信号进行VMD分解,根据各模态分量(IMF)中心频率确定最优模态数K,再由各IMF分量峭度和相关系数指标确定包含故障信号的敏感IMF。然后,对选取模态分量的Hankel矩阵进行SVD分解,由奇异值能量标准谱确定有效奇异值数量,实现对信号的降噪重构。最后,利用瞬时Teager能量算子及其频谱分析识别微弱故障产生的周期性冲击特征频率。运用该方法处理滚动轴承微弱故障信号,能准确提取故障特征频率及倍频,文中证明了其准确性和有效性。  相似文献   

4.
针对变速器加速过程下轴承故障特征易于暴露难以提取问题,提出一种Teager能量算子增强倒阶次谱方法。计算加速过程等角度重采样信号的Teager能量算子,对Teager能量算子输出进行倒谱分析,获得Teager能量算子增强倒阶次谱。对加速过程滚动轴承外圈、内圈剥落故障信号进行分析,结果表明,Teager能量算子能有效增强冲击成分,抑制非冲击成分;倒阶次谱能从干扰中准确识别被增强的故障冲击特征,提取轴承微弱故障特征。  相似文献   

5.
针对Teager能量算子在解调滚动轴承早期微弱故障特征中的不足,提出一种最大相关峭度解卷积降噪与Teager能量算子解调相结合的滚动轴承早期故障识别方法。首先采用最大相关峭度解卷积算法以包络谱的峭度最大化为目标对原信号进行降噪处理、检测信号中的周期性冲击成分,然后利用Teager能量算子增强降噪信号中的周期性冲击特征、抑制非冲击成分,最后通过分析Teager能量谱中明显的频率成分来诊断故障类型。滚动轴承外圈、内圈故障诊断实例表明,该方法能有效实现滚动轴承早期微弱故障的识别。  相似文献   

6.
为了解决强背景噪声环境下直升机滚动轴承故障信号微弱,故障特征难以提取的问题,提出一种基于最小熵解卷积(Minimum Entropy Deconvolution,MED)与Teager能量算子(Teager Energy Operator,TEO)的滚动轴承故障特征提取的新方法。根据滚动轴承故障信号表现为冲击波形的特点和MED降噪对冲击特征敏感的特性,采用MED对故障信号进行降噪处理,同时增强信号中的冲击成分;再结合TEO适合检测信号的瞬时变化,能有效提取故障信号冲击特征的特点,计算降噪信号的Teager能量信号,进行频谱分析提取滚动轴承的故障特征。通过对仿真信号和直升机滚动轴承混合故障信号进行分析,实验结果表明,该方法能有效提取强背景噪声环境中的微弱复合故障特征,具有一定的工程应用价值。  相似文献   

7.
峰值冲击是轴承故障信号中的重要特征之一,明显的峰值冲击有利于其故障诊断,而低转速工况下轴承故障由于振动能量小,峰值冲击微弱,导致故障特征容易被噪声淹没,通常无法通过包络分析等方法提取。为了增强微弱故障信号中的峰值冲击,提取低转速轴承故障特征,提出了基于Teager峰值能量的故障特征提取方法。采用移动窗口截取原信号,计算截取信号段的峰峰值,从而构造峰峰值特征波形,增强故障信号中的峰值冲击;利用Teager能量算子对峰峰值特征波形进行解调,抑制噪声干扰,提取瞬时冲击成分;根据提取的Teager能量频谱判断轴承的运行状态。实验结果表明,该方法有效提取了低转速轴承的冲击特征,实现了故障的诊断。  相似文献   

8.
为了从故障轴承信号中提取包含故障信号的特征频率,提出了基于LMD自适应多尺度形态学和Teager能量算子解调的方法。首先,采用LMD将目标信号分解成有限个PF(Product function,PF)分量,分别对其进行多尺度形态学滤波,利用峭度准则优化形态学结构元素尺度,自适应寻求最优解,最后用Teager能量算子计算各PF分量的瞬时幅值,通过瞬时Teager能量的Fourier频谱识别轴承的故障特征频率。为了验证理论的正确性,进行了数字仿真实验和轴承故障模拟实验,并与EMD形态学和包络解调方法进行了比较,结果表明该算法明显优于其他两种方法,对滚动轴承外圈、内圈和滚子故障的检测精度更高,能够清晰地提取出故障信号的频率特征。  相似文献   

9.
为准确提取非线性、非平稳的滚动轴承故障信号中的故障特征,提出基于变分模式分解(Variational Mode Decomposition,VMD)和1.5维Teager能量谱的滚动轴承故障特征提取方法;变分模式分解(VMD)是一种新的信号自适应分解方法,1.5维Teager能量谱具有1.5维谱良好的降噪效果和Teager能量算子强化信号瞬态冲击的优点。故障特征提取过程:首先,对滚动轴承故障信号进行VMD分解得到一组分量,根据峭度-相关系数准则筛选出2个冲击特征明显分量进行信号重构;再次,对重构信号进行1.5维Teager能量谱分析;最后根据能量谱图的分析,提取出滚动轴承的内圈和滚动体故障特征。仿真信号和试验信号的分析都验证了提出方法的有效性;通过与EEMD分解比较,采用VMD变分模式分解和1.5维Teager能量谱的分析方法更具有区分性,可以有效识别滚动轴承的故障特征。  相似文献   

10.
如何从含噪振动信号中准确提取微弱周期性故障特征是辨识滚动轴承局部故障的关键。针对此问题,提出一种基于二次聚类分割与Teager能量谱的滚动轴承微弱故障特征提取方法。首先通过傅里叶变换得到故障信号的频谱并利用模糊C均值算法对其进行聚类分割;然后对每个频段进行傅里叶逆变换并计算不同频段时域信号的峭度,选取峭度最大频段对应的时域信号作为滤波信号,对该信号进行第二次聚类分割及傅里叶逆变换,选取最大峭度对应的频段作为通带过滤信号,进一步消除噪声和自然周期性成分的影响;最后采用Teager能量算子对得到的时域故障信号进行解调分析,以获取滚动轴承微弱故障特征频率。仿真分析和实验验证结果表明,该方法能准确有效地提取出滚动轴承微弱故障特征。  相似文献   

11.
With rotating speed of rotating machinery, it is difficult to maintain stability in practical work which brings many difficulties to the condition monitoring of rotating machinery. When rolling element bearings work under variable speed, the corresponding vibration will contain obvious non-stationary characteristics, along with the presence of strong background noise, which makes it difficult for some traditional spectrum analysis methods to identify the characteristic frequency of bearings fault. In spite of the existence of strong non-stationary characteristics, the bearing fault signal has some hidden periodic components in the angle domain which makes it possible to extract the fault feature of bearings by means of spectral correlation analysis. Therefore, a fault feature extraction method based on Teager–Kaiser energy operator (TKEO) and fast spectral correlation (Fast-SC) in angle domain is proposed in this paper; Fast-SC is a newly proposed spectral correlation calculation method which can effectively improve the efficiency of computing; Teager–Kaiser energy operator can enhance the transient impact which also has a fast computing speed. In this paper, the instantaneous speed of each time is estimated by the time–frequency analysis method based on short-time Fourier transform and then, the original time-domain signal is resampled in angle domain; the TKEO is used to strengthen the fault impact components in signal; finally, the Fast-SC is applied to the strengthened signals, the enhanced envelope spectrum is calculated, and the fault features of rolling bearings are extracted. The effectiveness of the method is verified by measured signals.  相似文献   

12.
针对轴承振动信号中存在周期性冲击这一现象,提出了时间-小波能量谱熵的计算方法,用于滚动轴承的故障诊断。首先构造脉冲小波,采用连续小波变换的方法得到时间域内小波能量谱,再沿时间轴计算能量谱熵,定量描述振动信号沿时间的分布情况,不同故障下轴承的冲击振动随时间变化程度不同,其时间-小波能量谱熵值也就不同。将不同故障轴承信号的时间-小波能量谱熵作为向量特征输入建立支持向量机,实现了对轴承的工作状态和故障类型的判断。实验结果表明,时间-小波能量谱熵可以有效地对滚动轴承进行故障诊断。  相似文献   

13.
基于谐波小波包变换的齿轮箱包络解调分析   总被引:2,自引:2,他引:0       下载免费PDF全文
李慧  刘小峰  夏雨峰 《振动与冲击》2012,31(12):129-134
齿轮箱发生某些故障时所产生的非平稳信号具有多分量调制的特点,啮合分量及倍频受噪声干扰影响严重且相互交叠,信号频带较宽异常复杂,给故障诊断带来了很大的障碍。在研究谐波小波频段分解与Hibert解调分析的基础上,提出了基于谐波小波包变换的解调分析法的实现过程。该方法首先对预处理后的信号进行三次样条插值并作必要的频谱分析;然后结合频谱特征与齿轮箱故障特征频率的理论计算值,确定所需提取的特征啮合分量;继而确定谐波小波包分解层数与提取的频带带宽,再通过傅立叶变换及反变换得到相应的特征啮合分量;最后采用Hilbert算子对提取出的啮合分量进行包络解调分析。将该方法应用到实际齿轮箱的磨损及点蚀故障的诊断试验中,验证了该方法对任意频段调制信息的精确提取能力,为齿轮箱故障源及故障程度的准确定位提供了可靠的判断依据。  相似文献   

14.
滚动轴承早期故障信息微弱,且混有大量背景噪声,难以提取其故障特征。提出了一种改进的自适应变分模态分解(AVMD)与Teager能量谱的微弱故障诊断方法。将最小平均包络熵(MMEE)作为目标函数,自动搜寻影响参数最佳值,确保变分模态分解(VMD)实现最优分解,并提出加权峭度指标(WK)用于选择有效模态分量进行信号重构,对重构信号进行Teager能量谱分析,从而识别故障特征频率。对轴承微弱故障振动信号的研究表明,所提方法改进了传统VMD算法分解精度受参数影响较大,导致信号出现过分解或欠分解的问题;与集合经验模态分解和局部均值分解算法相比所提方法具有更强的噪声鲁棒性和故障信息提取能力。  相似文献   

15.
共振解调法的难点在于带通滤波器的确定,谱峭度可根据信号特征寻找最优滤波器参数,很好地解决以上问题。然而谱峭度在对低信噪比数据进行处理时,滤波后的信号往往残留较大带内噪声,极大地影响了后续故障诊断的准确性。针对该问题,提出利用Teager能量算子追踪SK滤波信号的系统总能量,从信号能量的角度消除带内噪声,二次增强隐藏于噪声中的故障冲击特征,最后通过包络谱分析获得诊断结果。应用轴承故障仿真数据、实验室内圈和外圈故障数据验证了本方法的有效性。  相似文献   

16.
时间-小波能量谱在滚动轴承故障诊断中的应用   总被引:11,自引:10,他引:11  
为滚动轴承故障诊断提供了一种新途径,针对滚动轴承故障振动信号的特点,构造脉冲响应小波,采用连续小波变换的方法来提取滚动轴承故障振动信号的特征,在此基础上提出了一种滚动轴承故障诊断方法:时间-小波能量谱自相关分析法。通过对滚动轴承具有外圈缺陷、内圈缺陷的情况下振动信号的分析,说明时间-小波能量谱自相关分析法不仅能检测到滚动轴承故障的存在,而且能有效地识别滚动轴承的故障模式。  相似文献   

17.
S变换时频谱SVD降噪的冲击特征提取方法   总被引:1,自引:0,他引:1  
为了从滚动轴承故障振动信号中提取出冲击特征,以进行轴承故障诊断,提出基于S变换时频谱奇异值分解(SVD)的信号降噪方法。S变换是一种信号时频表示方法,适合于处理与分析非平稳的冲击特征信号。在SVD降噪过程中,数据矩阵由信号的S变换谱系数构成;奇异值序列的置零阈值位置坐标可由奇异值差分谱最前面部分峰值群的最后一个峰值点序号来确定。最后对降噪的数据矩阵进行S逆变换,获得信号的时域冲击特征。仿真研究表明,基于S变换时频谱的SVD降噪方法可以成功地从低信噪比信号中提取出周期性的冲击特征。将本方法用于处理与分析滚动轴承故障振动信号,根据所提取出的冲击特征出现频率,能够方便有效地实现轴承相关故障的诊断。  相似文献   

18.
探测信号中周期性冲击分量的奇异值分解技术   总被引:6,自引:2,他引:4  
机械设备振动信号中是否存在周期性的冲击分量是其有无故障的重要标志。通常检测的机械振动加速度信号 ,由于信噪比太低 ,即使存在周期性的冲击分量也往往被淹没在强的背景噪声之中。通过时域波形和频谱等基本分析手段来探测振动加速度信号中的周期性冲击分量往往是困难的。本文在总结基于奇异值分解的信号周期分量探测原理的基础上 ,针对现有信号奇异值分解技术存在的问题 ,对信号奇异值分解矩阵的构造方法作了重大改进。通过应用实例显示 ,用改进后的信号奇异值分解技术探测振动加速度信号中的周期性冲击分量是可行的  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号