首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
云南某低品位钨矿中WO3主要赋存于黑钨矿,杂质矿物以石英为主,少量硫化矿物和磁性铁矿物,钨矿物嵌布粒度粗细不均,属低品位难选钨矿。针对该钨矿的特点,论述了磨矿细度、药剂用量和磁场强度对该钨矿选别效果的影响,对该低品位钨矿采用了"磨矿—摇床抛废(产出部分钨精矿)—中矿再磨—浮选脱硫—磁选除铁—摇床重选"的联合工艺回收钨矿物,在原矿含WO30.31%的条件下,最终获得了含WO363.40%、WO3回收率为79.76%的钨精矿,实现了对该低品位钨矿的有效回收。  相似文献   

2.
以铁品位35.59%的山东某地的铜渣和山东、甘肃两地的四种高炉灰为原料,进行共还原—磁选回收铁工艺试验,研究了高炉灰作为共还原—磁选工艺还原剂的可行性。结果表明,焙烧体系中仅加入高炉灰时,铜渣与高炉灰共还原—磁选所得还原铁指标均较差;当加入氟化钙时,还原铁中铁品位和铁回收率均大于90%,指标较好,实现了铜渣与高炉灰中铁资源的高效回收。高炉灰种类及用量、氟化钙用量、还原温度、还原时间及磨选条件均对还原铁指标有影响,在铜渣∶G1∶氟化钙质量比为100∶30∶15、共还原温度1250℃、共还原时间60 min的条件下焙烧,然后在磨矿细度-74μm占51.87%、磁场强度80 kA/m条件下磁选,可获得铁品位和铁回收率分别为92.06%和92.65%的直接还原铁。该工艺可以为铜渣和高炉灰的综合利用提供参考。  相似文献   

3.
郭丽东  朱磊 《包钢科技》2018,44(3):27-30
某磁铁矿石矿物组成复杂,为了充分利用其中的矿物资源,进行了该铁矿物的工艺矿物学研究及选矿工艺试验研究。结果表明该矿石具有钙镁高、硅铝低的特点,属碱性矿石的范畴;矿石中可供选矿回收的主要组分是铁。通过阶段磨矿阶段选别—中磁选回收流程可获得产率34.01%、品位65.36%、回收率72.50%的铁精矿;通过阶段磨矿阶段选别—强磁选回收流程可获得产率38.93%、品位59.62%、回收率75.69%的铁精矿。  相似文献   

4.
针对陕西某微细粒磁铁矿中部分磁铁矿与极微细脉状脉石矿物互层交互嵌布、含硫高、处理难度大的特点,在工艺矿物学研究的基础上提出了原矿粗碎磁滑轮抛尾—磁选抛尾—磁粗精矿再磨浮选脱硫—浮硫尾矿磁精选联合流程。全流程试验可获得铁品位65.15%、含硫0.11%、铁回收率73.10%的铁精矿,以及硫品位25.12%、硫回收率30.67%的硫精矿。  相似文献   

5.
基于攀钢高钛型含钛高炉渣综合利用现状,提出"磁选收铁-活化脱铝—酸浸提钛"的技术途径,以期实现含钛高炉渣中Fe、Al、Ti等有价元素的综合回收。采用X射线衍射仪和矿相显微镜研究了含钛高炉渣中矿物相的组成和金属铁在含钛高炉渣中的赋存状态。采用单一弱磁选和阶段磨矿-阶段弱磁选的工艺回收含钛高炉渣中的金属铁。结果表明:高炉渣中的主要矿物相为钙钛矿、透辉石和镁铝尖晶石,金属铁多以球粒状分布于透辉石等矿物颗粒中,含少量磁铁矿。采用阶磨、阶选的工艺在节约磨矿成本的同时可获得铁精矿的品位为63.5%,回收率为64.2%,有效回收了高炉渣中的金属铁,并为后续工艺中活化脱铝和酸浸提钛创造了有利条件。  相似文献   

6.
湿式弱磁选从含钛高炉渣中提取金属铁的研究   总被引:1,自引:0,他引:1  
基于攀钢高钛型含钛高炉渣综合利用现状,提出“磁选收铁-活化脱铝—酸浸提钛”的技术途径,以期实现含钛高炉渣中Fe、Al、Ti等有价元素的综合回收.采用X射线衍射仪和矿相显微镜研究了含钛高炉渣中矿物相的组成和金属铁在含钛高炉渣中的赋存状态.采用单—弱磁选和阶段磨矿-阶段弱磁选的工艺回收含钛高炉渣中的金属铁.结果表明:高炉渣中的主要矿物相为钙钛矿、透辉石和镁铝尖晶石,金属铁多以球粒状分布于透辉石等矿物颗粒中,含少量磁铁矿.采用阶磨、阶选的工艺在节约磨矿成本的同时可获得铁精矿的品位为63.5%,回收率为64.2%,有效回收了高炉渣中的金属铁,并为后续工艺中活化脱铝和酸浸提钛创造了有利条件.  相似文献   

7.
酒钢选矿厂排出的镜铁矿强磁选尾矿铁品位约为28%,有较高的回收价值。为回收其中的铁矿物,本研究基于该强磁选尾矿工艺矿物学,对其进行反浮选—磁化焙烧—磁选试验研究。研究结果表明:该强磁尾矿经过一粗一精的反浮选试验流程,可得到铁品位为43.88%的浮选精矿,其作业铁回收率为50.93%。经过磁化焙烧后得到焙砂,焙砂进行一粗一精的磁选试验后可得到铁品位为62.37%的磁选铁精矿,其作业铁回收率为83.39%。  相似文献   

8.
云南某菱铁矿焙烧产品选矿工艺研究   总被引:1,自引:1,他引:0  
通过对云南某菱铁矿石焙烧产品的性质及其相关研究认为,细磨-弱磁选是有效处理该焙烧产品的工艺.试验表明:①该菱铁矿焙烧效果较好;②磨矿是影响选矿指标的重要因素;③弱磁选和重选都能有效地回收磨细焙烧产品中的铁矿物;④在相同磨矿条件下,弱磁选比重选回收率高,而富集比相对较低;⑤采用磨矿(磨矿细度为72.51%-0.074mm)-弱磁选(磁场强度为232kA/m),一次粗选,一次精选工艺选别该焙烧产品,可以得到铁品位为74.10%,回收率为93.06%的铁精矿.  相似文献   

9.
杨道广 《钢铁钒钛》2022,(3):111-117
某低品位钒钛磁铁矿,TiO2品位为6.15%,矿物组成复杂,为充分回收其中的钛铁矿,针对钛的赋存状态及粒级分布特点,制定了强磁磁选预抛尾、重选提质、细磨弱磁选除铁、反浮选脱硫与一粗一扫两精浮钛组合工艺流程,研究了磁感应强度、磁介质大小、脉动冲程、磨矿浓度、磨矿时间、浮选调整剂及捕收剂用量等的影响,在获得最优工艺条件的基础上,按“一段强磁抛尾—两段重选抛尾—磨矿—除铁—浮选”的工艺流程进行了闭路试验。试验获得了TiO2品位48.22%,回收率为35.19%的钛精矿。矿石中主要有用的矿物钛铁矿得到了有效的回收。  相似文献   

10.
吕淑湛  徐花婷 《黄金》2020,41(11):62-66
青海某低品位铜锌硫多金属矿石含硫高,黄铁矿和磁黄铁矿含量高,矿石结构和矿物组成复杂,有用矿物相互共生密切。针对矿石性质,进行了优先浮选铜—磁选脱硫—浮选锌—浮选硫工艺条件研究。结果表明:在最佳条件下,闭路试验获得了铜精矿铜品位17.26%、铜回收率88.06%,锌精矿锌品位44.08%、锌回收率88.31%,硫精矿硫品位35.03%、硫回收率81.39%的较好指标。  相似文献   

11.
某铁矿为微细粒弱磁性铁矿,有用矿物主要是赤铁矿和磁铁矿,脉石矿物主要是石英.在磨矿中产生许多矿泥,影响其可浮性.采用重选、磁选、浮选、选择性絮凝和磁化焙烧等工艺处理该矿石.结果表明,采用选择性絮凝脱除矿泥,阳离子反浮选工艺最合适.在原矿含铁45.27%的情况下,获得铁品位59.67%,回收率78.84%的铁精矿.  相似文献   

12.
杨双平  刘海金  王苗  刘起航  张攀辉 《钢铁》2021,56(10):65-73
 针对高磷鲕状赤铁矿石矿物结构复杂导致的脱磷困难现状,为实现深度脱磷的目的,探索矿物还原过程中磷的形态及微观脱磷过程。以铁品位为44.78%、磷的质量分数为0.92%的高磷鲕状赤铁矿为研究对象,根据其面扫描电镜及矿相结构图可知,矿物之间嵌布紧密、逐层形成鲕状结构,石英、鲕绿泥石与赤铁矿等互相包裹,磷元素集中分布在鲕粒内部的氟磷灰石中。通过对焙烧产物做扫描电镜(SEM)及能谱分析(EDS),对高磷鲕状赤铁矿脱磷机理进行研究。研究结果表明,当YM-1脱磷剂质量分数为16%,还原过程中鲕状结构被破坏,金属铁逐渐从鲕粒中析出聚集,脉石与铁颗粒分离明显,磷化为不同形态被脱除。磁选后尾矿、铁分离完全,磷元素几乎全部进入尾矿,添加复合脱磷剂YM-1焙烧磁选后铁精矿的铁品位为90.16%,铁回收率为91.25%,磷质量分数为0.056%,脱磷率为93.91%。铁精粉各项指标满足工业冶炼要求。  相似文献   

13.
对于磁铁矿和赤铁矿混合型石英脉铁矿,磁浮工艺是成熟的.针对该矿嵌布粒度细,品位低的特点,利用粗精矿磨矿提高磁铁矿精矿品位和浮选入选品位,在原矿铁品位22%情况下,试验获得弱磁铁精矿品位大于65%,反浮选铁精矿品位大于58%,综合铁回收率大于50%.  相似文献   

14.
要:某含金铁矿石属于变质沉积型铁矿石,主要金属矿物为赤铁矿和磁铁矿,还含有品位为1.09×10-6的金。金矿物嵌布粒度极细且赋存在赤铁矿物中,使得金与铁很难分离。经过“(粗磨)弱磁选+(细磨)浮选+中强磁选”的联合选矿工艺试验流程,得到含金品位53.37×10-6、金选矿回收率60.47%的金精矿,得到含铁品位64.41%、铁选矿回收率75.51%、产率62.06%的铁精矿,选矿技术指标较好。磨矿细度对金矿物的回收和弱磁性铁矿物都至关重要,为了降低磨矿成本,采用阶段磨矿和阶段选别较为有利。  相似文献   

15.
江西某铅锌银多金属矿的特点是含硫高,并含有铅、锌、银、铁、锰等多种有用金属矿物可以回收利用.试验针对该多金属矿物中伴生复杂的情况,对比了铜铅锌优先浮选和铜铅锌优先浮选-锌粗精矿再磨-锌中矿磁选的工艺流程,后者获得了较好指标:铅精矿含Pb 49.57%,Pb回收率87.53%;锌精矿含Zn 45.82%,Zn回收率75.12%;硫精矿含S 44.69%,S回收率71.35%.针对铁锰以碳酸盐的形式存在,且与脉石伴生严重呈细粒嵌布的情况,采用了磁选-焙烧-磁选的试验方案回收浮选尾矿中的铁锰.   相似文献   

16.
甘肃某公司所属的铁矿,铁主要是以磁铁矿的形式产出,少量黄铁矿、赤、褐铁矿等,脉石以含铁镁的硅酸盐矿物为主,杂质元素含量较低。采用单一磁选的原则工艺流程就可以获得合格的铁精矿,将原矿磨至-0.074mm占65%进行铁粗选,获得的铁粗精矿再磨至-0.074mm占85%,经一次精选,产出铁精矿,所得的精选尾矿与粗选尾矿合并后作为总尾矿的工艺流程。试验获得了铁品位66.32%,铁回收率79.29%的铁精矿,试验指标良好,为现场生产提供了技术依据。  相似文献   

17.
Beneficiation studies were carried out on iron bearing alluvial sand to recover iron values for pelletisation. The studies include detailed mineralogical characterization, physical and chemical characteristics, beneficiation studies including grinding, magnetic and high tension separation. The results of these investigations indicate that the samples contain 50.2% Fe and 8.2% SiO2 on average. The mineralogical studies reveal that the sand contains dominantly heavy minerals with small amount of quartz. The heavy minerals are magnetite and ilmenite with small quantities of amphibole and pyroxene group minerals. Detailed beneficiation studies carried out by various techniques indicated that the iron content can be upgraded by simple low intensity wet magnetic separation after grinding the sample to below 210 microns. A product with 62.7% Fe can be obtained at 65.5% yield. The product obtained can be used for pelletisation by blending with suitable high grade iron concentrate.  相似文献   

18.
 为最大限度地利用恩施黑石板地区的铁矿资源,先通过XRD、扫描电镜、金相显微镜等手段研究了它的矿相组成和结构,得知其主要成分是赤铁矿和石英,矿的显微结构以鲕粒群簇为主,鲕粒中赤铁矿与磷灰石呈环带状分布。矿相结构决定了用一般的选矿方法分离铁、磷非常困难,为此用实验室煤基直接还原法研究了还原温度、还原时间、煤种、添加剂、磁选工艺等对精矿中铁品位和铁回收率的影响规律,得到了提高还原率的合理工艺参数:以哈密煤为还原剂,焙烧还原温度1573K,还原时间40min,一段磨矿时间15min,磁场强度280kA/m。采用此工艺可使精矿产率、铁品位、铁回收率分别达到43.21%、 95.77%和92.18%,磷品位由0.76%降至0.097%。该研究为该地区高磷鲕状赤铁矿工业化的开发利用提供了依据。  相似文献   

19.
摘要:鲕状赤铁矿具有含磷高、易泥化,铁与脉石矿物呈鲕状嵌布结构等特点,常规的重选和浮选等工艺难以取得较好的选矿指标。磁化焙烧-磁选工艺是利用高磷鲕状赤铁矿最有效的手段之一。X射线衍射(XRD)分析结果表明,在750℃的条件下,焙烧矿中磁铁矿的相对质量分数最大。焙烧温度高于800℃会发生过还原现象,生成富氏体,不利于焙烧矿的弱磁选。光学显微镜分析表明磁化焙烧过程不会破坏鲕状赤铁矿的鲕粒结构,只发生铁物相的转变。赤铁矿到磁铁矿的晶型转变由表及里,但是多数鲕状赤铁矿颗粒不会完全磁化,磁化焙烧效果与粒度有关。全铁品位为43.74%的矿样,在焙烧温度750℃、焙烧时间60min的条件下,弱磁选可得到全铁品位为55.42%,铁回收率为85.66%的人工磁铁矿,磁铁矿转化率在90%以上。  相似文献   

20.
为了提高梅山铁矿资源利用率,开展了铁矿尾矿再选工业试验。每年产生90万t品位低、粒度细的尾矿,主要含有赤铁矿和菱铁矿,采用高梯度强磁—螺旋溜槽重选工艺,选出强磁精矿:产率36.63%、品位28.51%,可以用作水泥铁质校正剂;选出螺旋溜槽精矿:产率5.75%、品位48.55%,可以作为配矿原料。应用后能够减少尾矿排放量,具有较大的经济效益和生态环保社会效益。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号