首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
运动学标定能够有效提高并联机器人的运动精度.以一类2UPR&2RPS型冗余驱动并联机器人为研究对象,提出了该类装置的运动学标定方法.通过将误差闭环矢量方程分别投影到运动支链的驱动方向和约束方向建立了该机器人的几何误差模型,并分离出可补偿误差源和不可补偿误差源.基于误差映射矩阵建立了误差灵敏度指标,随后通过灵敏度分析找出了对末端误差影响较大的不可补偿误差源.利用正则化算法建立了基于激光跟踪仪末端位置测量的几何误差辨识模型.标定试验结果表明,所提出的运动学标定方法是有效的.  相似文献   

2.
由机床几何误差复合而成的空间误差是影响加工精度的主要因素。以提高数控机床加工精度为研究目的,提出了一种基于旋量理论的机床空间误差预测及其验证技术。首先,借助旋量指数积建立了机器人末端实际位形旋量指数积数学模型,通过分析了机床21项几何误差并结合运动链拓扑搭建了机床完备模型;进而,以传统辨识方法识别了21项几何误差,输出机床空间误差预测结果;最后,开展了基于ISO230-6的体对角线实验值与模型预测值对比验证实验。实验结果表明四条体对角线实验测量值与模型预测值符合程度较高,有效验证了基于旋量理论的卧式加工中心空间误差预测分析方法正确性及合理性。  相似文献   

3.
提出了一种2UPS&UPR&UP型并联机器人的精度综合方法。基于理想运动学方程,利用摄动法建立该机器人的误差映射模型,并分离出可补偿误差源与不可补偿误差源;建立不可补偿误差源与末端姿态误差的标准差关系,揭示了工作空间内末端姿态误差标准差的分布情况;利用灵敏度系数法对机器人不可补偿误差源进行灵敏度分析,确定各不可补偿误差源对末端运动精度的影响程度;依据3σ原则,以灵敏度指标作为分配系数,通过精度综合得到给定末端精度下的不可补偿误差源的值,为机器人加工制造提供理论依据。仿真实验验证了该方法的有效性。  相似文献   

4.
针对现有误差元素灵敏度分析与后续误差补偿关联性不强的问题,建立运动轴几何误差贡献值模型并提出运动轴几何误差灵敏度分析方法,以获得本身几何误差对机床精度有很大影响的关键运动轴。结合指数积理论和坐标系微分运动理论建立基于误差敏感矩阵的运动轴几何误差贡献值模型,各运动轴几何误差贡献值相加得到机床综合误差模型;计算各运动轴误差权重分量和误差综合权重实现运动轴误差灵敏度分析,选择误差综合权重平均值最大的运动轴为机床关键运动轴,并对关键运动轴的误差补偿方法进行分析讨论。最后,在北京精雕集团的五轴加工中心上进行仿真实验验证。研究结果表明:所建立模型和所提出分析方法是有效的,且只补偿关键运动轴的几何误差贡献值能有效地提高五轴机床加工精度。  相似文献   

5.
对机器人正运动学的分析研究是实现控制和轨迹规划的基础。介绍了旋量理论,基于李群李代数和旋量理论建立了RRRP机器人的运动学模型;根据指数积公式进行了机器人运动学正解分析并建立了运动学方程,对比D-H参数法具有更为明确的几何意义和简洁性;利用ADAMS软件进行了运动学仿真,直观的显示了机器人的运动规律,且运动学正解方程得到的结果与仿真数据之间的误差不超过0.05。结果表明:由旋量理论和指数积公式建立的机器人运动学方程的正确性,以及旋量理论应用于类似刚体系统运动学分析的可行性。  相似文献   

6.
《工具技术》2021,55(8)
为提高孔、套筒类零件的加工精度、数控内圆复合磨床的磨削精度和加工效率,明确各误差参数对磨削精度的影响程度,针对某型号的数控内圆复合磨床进行误差分析。基于多体系统理论建立该磨床的拓扑结构,通过计算得到相应的几何误差模型,并对各误差参数进行求导,得到各自的灵敏度表达式,代入磨床结构参数以及检测得到的误差参数后,通过归一化处理可确定各误差参数的灵敏度系数,对灵敏度系数进行排列,并对前几项系数较大的误差进行补偿,为后期的机床加工精度提高奠定了基础。  相似文献   

7.
本文提出一种新的机床位置误差灵敏度分析方法。首先基于多体理论和齐次变换矩阵建立了五轴龙门机床位置误差模型。其次通过截断傅里叶技术来表征与位置有关的几何误差参数,每个误差参数对位置误差的灵敏度值可表示为其傅里叶幅值平方。然后归一化处理,关键的几何误差参数为第2,3,8,15和26项误差。通过与传统的Sobol法对比,仿真结果表明两种灵敏度分析方法辨识的关键几何误差相同且灵敏度值相近。此外,本文提出的灵敏度分析计算效率优于传统Sobol法。最后为了验证关键几何误差的有效性,提出了一个关于机床关键几何误差的补偿实验。实验结果表明,补偿关键几何误差后机床的加工精度提升了48%。因此,本文提出的机床位置误差灵敏度分析方法是可行的和有效的。  相似文献   

8.
基于量子粒子群优化算法的机器人运动学标定方法   总被引:6,自引:0,他引:6  
基于量子粒子群优化算法,提出一种同样适用于串联机器人和并联机器人的运动学标定方法。利用闭环矢量链方法和Denavit-Hartenberg矩阵法,分别建立并联机器人和串联机器人的运动学误差模型,将运动学误差模型内的几何误差源作为相应的机构参数修正量。由于机器人运动学误差模型表现有较强的非线性,因此确定模型内的机构参数修正量为优化变量,将机器人运动学参数标定问题转化为非线性系统的优化问题。采用量子粒子群优化算法对优化问题进行求解,利用优化获得的参数修正量更新运动学模型,以达到提高机器人运动精度的目的。以五轴并联机床的平面约束机构为研究对象,通过试验验证该标定方法的标定效果,并与模糊插值标定方法进行比较分析,结果表明在较大的工作空间内基于量子粒子群优化的运动学标定方法更为有效。  相似文献   

9.
位姿精度是评价机器人性能好坏的一个重要指标,建立有效的补偿算法是提高机器人位姿精度的重要保证。 本文以 一种 2TPR&2TPS 并联机器人为研究对象,建立了基于正解的误差模型,根据该误差模型得出了动、静平台位置参数误差及 驱动杆零点长度误差与机器人末端位姿误差的关系,同时建立了基于逆解的补偿算法。 通过粒子群算法对误差函数的最小 值寻优,得到了机器人驱动杆补偿量和位姿补偿量,仿真得出该机器人的平均位置精度提升了 98. 148% ;将驱动杆补偿量与 理想位姿对应的驱动杆长叠加作为机器人的驱动杆输入量进行实验验证,实验得出机器人的平均位置精度提升了 87. 457% ,补偿效果显著。  相似文献   

10.
基于几何误差不确定性的滚动导轨运动误差研究   总被引:1,自引:0,他引:1  
产品设计阶段,滚动导轨几何误差是未知的,具有不确定性,其运动精度亦是不确定的。为了研究设计阶段滚动导轨几何误差不确定对其运动误差的影响规律,提出将不确定的几何误差等效为滚动体弹性变形的运动误差分析方法。采用区间参数和小位移旋量描述滚动导轨的几何误差,并采用蒙特卡罗模拟(Monte Carlo simulation, MCS)方法进行不确定模拟仿真,获得满足约束的几何误差分布范围。基于此,将滚动导轨几何误差等效为滚动体的弹性变形并根据赫兹接触理论建立滚动导轨的静力平衡方程,从而实现了滚动导轨运动误差的不确定性分析。以某一滚动导轨为例,基于提出的方法分析了滚动导轨几何误差不确定性下其运动误差的分布规律,并分析了不同直线度公差、预紧力以及外载荷对导轨运动误差的影响规律。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号