首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
采用高温固相法合成了Eu~(3+)激活的Ba_3La_6(SiO_4)_6红色荧光粉并对其发光性质进行了研究。XRD谱显示,合成样品为纯相Ba_3La_6(SiO_4)_6晶体。样品的激发光谱由一系列宽谱组成,峰值分别位于300、364、384、395、416和466nm,其激发主峰位于395nm。在395nm激发下,荧光粉在619nm(~5D_0→~7F_2)处有很强的发射。研究了不同Eu~(3+)掺杂浓度对样品发射光谱的影响。结果显示,随Eu~(3+)掺杂量的增大,发光强度先增大后减小。Eu~(3+)掺杂摩尔分数为13%时,出现浓度淬灭,其浓度淬灭机理为电偶极-电偶极相互作用。研究了不同Bi~(3+)掺杂量对Ba_3La_6(SiO_4)_6:Eu~(3+)发射光谱及色坐标的影响。Bi~(3+)掺杂样品中存在Bi~(3+)→Eu~(3+)的能量传递。  相似文献   

2.
采用液相沉淀法合成了钆单掺杂、铕单掺杂、钆-铕共掺杂的硅酸锶发光材料。用X-射线衍射(XRD)对其结构表征。利用荧光光谱(PL)方法对合成的样品进行发光性能表征。研究结果表明:在250nm紫外光为激发波长时,Eu~(3+)单掺杂Sr_2SiO_4∶0.04Eu~(3+)的发光光谱出现Eu~(3+)的5D0→7F1(584nm)、5D0→7F2(614nm)、5D0→7F3(626nm)跃迁发光峰,钆-铕共掺杂Sr_2SiO_4∶x Gd3+,0.04Eu~(3+)发光体系中,主要表现为Eu~(3+)离子的特征发射。探讨了在硅酸锶发光体中Gd~(3+)→Eu~(3+)能量传递的机理,主要为电偶极-电偶极相互作用。当改变Eu~(3+)离子的掺杂浓度时,样品表现为Eu~(3+)离子的特征发射,此时材料发橙色光。保持Gd~(3+)、Eu~(3+)离子掺杂浓度不变,K+作为电荷补偿剂,对材料发光强度影响很小。  相似文献   

3.
采用高温固相法制备Sr_6La_4(SiO_4)_2(PO_4)_4O_2:xEu~(2+),yMn~(2+)荧光粉。通过X射线粉末衍射和结构精修研究了其物相组成和晶体结构以及该荧光粉的激发光谱、发射光谱、漫反射光谱、荧光热稳定性等发光性能。结果表明:该荧光粉具有磷灰石结构,Eu~(2+)和Mn~(2+)可占据结构中的2种阳离子格位。当Eu~(2+)的掺杂量为1%(摩尔分数)、Mn~(2+)的掺杂量为2%时,此荧光粉发光性能最好;荧光粉的发射光谱为450~550 nm的宽发射带,峰值位于478 nm,其激发光谱为220~400 nm的宽激发带,峰值位于302 nm,其色坐标值为(0.203 5,0.307 8);Mn~(2+)的掺杂有效的促进了荧光粉对近紫外光区域的吸收。当温度提升至150℃,Sr_6La_4(SiO_4)_2(PO_4)_4O_2:0.01Eu~(2+)和Sr_6La_4(SiO_4)_2(PO_4)_4O_2:(0.01Eu~(2+),0.02Mn~(2+))荧光粉的发射光谱强度分别为室温的34.46%和51.79%;Mn~(2+)的掺杂显著提升了其热稳定性。  相似文献   

4.
以硬脂酸镧和硬脂酸铕为反应物,采用溶剂热法合成了Eu3+离子掺杂的La2(MoO4)3:Eu3+纳米红色荧光粉。利用TEM、 XRD、FL对其形貌、结构和发光性能进行了表征。研究了溶剂种类、反应时间、反应温度、Eu3+掺杂浓度对产物微观形貌和发光性能的影响。结果表明:以异丙醇为溶剂,反应温度180℃、反应时间12h,得到的样品结晶度高、分散性好、形貌均一,粒径小于100nm。该样品可被近紫外光(391nm)和蓝光(462.5 nm)有效激发,最大发射波长位于613.5 nm,为窄带的红光。La2(MoO4)3:Eu3+的发光强度与Eu3 +离子掺杂浓度有关,其最佳掺杂浓度为15%(摩尔分数)。  相似文献   

5.
本文采用溶胶凝胶法,以钼酸铵、硝酸钠、氧化钆、氧化铕作为原料合成NaGd(MoO_4)_2:Eu~(3+)红色荧光粉。利用XRD对所合成的荧光粉进行结构分析,通过荧光光谱探究了样品的发光性能。结果表明:当退火温度为900℃,稀土离子Eu~(3+)的掺杂浓度为8%时所制备的荧光粉具有最佳的发光效果。  相似文献   

6.
采用凝胶-燃烧法合成了LiY(MoO_4)_2:Er~(3+)绿色荧光粉,借助XRD、FE-SEM、荧光光谱仪对样品的晶体结构、形貌、发光特性等进行了分析。结果表明:所得LiY(MoO_4)_2:Er~(3+)样品为四方白钨矿型结构,平均粒径为500 nm左右;样品的发射光谱由532 nm和553 nm的两个较强绿光发射峰组成,CIE1931色坐标为(0.2502,0.7272),位于绿光区;Er~(3+)最佳掺杂量为x=0.050 mol;最佳点火温度为700℃。  相似文献   

7.
采用溶胶-凝胶法制备稀土离子Eu~(3+)掺杂MgO-A1_2O_3-SiO_2堇青石基发光材料,通过应用差热分析(DSC)、X射线衍射仪(XRD)、荧光分光光度计(PL)对样品的晶体结构及光学性能进行测试。结果表明:添加烧结助剂5wt%B_2O_3,烧结温度为1200℃时,结晶度为85.93%;Eu~(3+)的添加使得晶格产生缺陷,当Eu~(3+)的添加量为4 wt%的发光强度最强,Eu~(3+)离子最强发射峰在613 nm处,发红色荧光。  相似文献   

8.
采用高温固相法制备了NaY(WO_4)_2:xEu~(3+)(x=10%,15%,19%,21%,25%)红色荧光粉,并对此荧光粉的结构及发光性能进行了研究。研究结果表明,样品在用λ_(ex)=393 nm激发时,在λ=617 nm处得到了发光光谱。XRD结果表明,Eu~(3+)掺杂浓度达到25%(摩尔分数)时,仍然能够形成纯相的NaY(WO_4)_2:Eu~(3+)多晶粉末。随着Eu~(3+)浓度的增大,Na(WO_4)_2:Eu~(3+)光发射强度逐渐增大,当Eu~(3+)浓度为19%时,发光强度达到最大,随后出现浓度猝灭。  相似文献   

9.
采用低温燃烧法分别制备了Y_2O_3:Eu~(3+)和钐(Sm~(3+))、铈(Ce~(3+))掺杂的Y_2O_3:Eu~(3+)红色荧光粉,并研究了反应温度及掺杂量对荧光粉性能的影响。使用激光粒度仪、X射线粉末衍射仪和荧光光谱仪,对样品的物相、粒度及发光特性进行了表征和分析。结果表明,Y_2O_3:Eu~(3+)的最佳反应温度为200℃,Sm~(3+)和Ce~(3+)掺杂Y_2O_3:Eu~(3+)的粒径分别分布在396~615 nm和531~955 nm,Sm~(3+)和Ce~(3+)的掺杂均能显著增强Y_2O_3:Eu~(3+)红色荧光粉的发光性能。  相似文献   

10.
通过高温固相法,在550℃下煅烧4h,制备了KY(MoO_4)_2:Pr~(3+)新型红色荧光粉,通过X射线衍射(XRD)和荧光光谱(PL),研究了其结构和发光性质。结果表明:煅烧温度为550℃、煅烧时间为4 h时,样品的发光强度最好;随着Pr~(3+)浓度的变大,样品的发光强度不断增加,当Pr~(3+)的摩尔掺杂量为4%时,样品的荧光强度达到最大,继续增加Pr~(3+)的浓度,由于浓度猝灭,样品发光强度降低。KY(MoO_4)_2:Pr~(3+)在456 nm处可被蓝光有效地激发,样品的发射峰波长主要位于609、627、657 nm处,其中在657 nm处发射出较强的红光。在不同Pr~(3+)掺杂浓度下,KY(MoO_4)_2:Pr~(3+)的色坐标均显示出相近的值,并且均位于红色区域。KY(MoO_4)_2:Pr~(3+)有望用于蓝光激发白光发光二极管(白光LED)的红色荧光粉。  相似文献   

11.
Thermal analyses of poly(3-hydroxybutyrate) (PHB), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(HB–HV)], and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) [P(HB–HHx)] were made with thermogravimetry and differential scanning calorimetry (DSC). In the thermal degradation of PHB, the onset of weight loss occurred at the temperature (°C) given by To = 0.75B + 311, where B represents the heating rate (°C/min). The temperature at which the weight-loss rate was at a maximum was Tp = 0.91B + 320, and the temperature at which degradation was completed was Tf = 1.00B + 325. In the thermal degradation of P(HB–HV) (70:30), To = 0.96B + 308, Tp = 0.99B + 320, and Tf = 1.09B + 325. In the thermal degradation of P(HB–HHx) (85:15), To = 1.11B + 305, Tp = 1.10B + 319, and Tf = 1.16B + 325. The derivative thermogravimetry curves of PHB, P(HB–HV), and P(HB–HHx) confirmed only one weight-loss step change. The incorporation of 30 mol % 3-hydroxyvalerate (HV) and 15 mol % 3-hydroxyhexanoate (HHx) components into the polyester increased the various thermal temperatures To, Tp, and Tf relative to those of PHB by 3–12°C (measured at B = 40°C/min). DSC measurements showed that the incorporation of HV and HHx decreased the melting temperature relative to that of PHB by 70°C. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 90–98, 2001  相似文献   

12.
研究了MnCO3,BaZrO3对 0 .35Ba(Zn1 /3Nb2 /3)O3(BZN) -0 .65Sr(Zn1 /3Nb2 /3)O3(SZN)陶瓷介电性能的影响。研究表明 :添加MnCO3,BaZrO3时 ,对陶瓷的烧结均起促进作用 ,增大介电常数。加入 1% (质量分数 )的MnCO3可使陶瓷具有较小的介质损耗 ,同时MnCO3对陶瓷的介电常数温度系数具有正向调整作用。加入BaZrO3后通过生成液相而减少了第二相Ba5Nb4O1 5,BaNb2 O6 的生成。所制备的 ( 0 .35BZN -0 .65SZN) 0 .1%MnCO3陶瓷的εr≈ 43.6,αε≈ -8× 10 - 6 /K ,tanδ =0 .6× 10 - 4 ,且烧结温度低于 130 0℃。  相似文献   

13.
研究了(Gd3+,Ce3+/Ce4+,Eu3+)对Tb3+掺杂硅酸盐玻璃发光性能的影响.结果表明:Tb3+掺杂硅酸盐玻璃可以发出弱蓝光(400~460 mm)和较强的绿光(480~600mm).Gd3+对Tb3+的发光起敏化作用,可提高TB3+掺杂硅酸盐玻璃的发光强度.在空气中熔制的玻璃中Ce3+和Ce4+同时存在,Ce3+对Tb3+发光起敏化作用;而Ce4+对Tb3+发光起淬灭作用.由于Ce4+比例比较高,CeO2加入导致TB3+发光强度降低,同时也缩短了Tb3+发光余辉.加入Eu2O3时,Eu3+自身发光分散了激发Tb3+发光的能量,使Tb3+的特征发射强度降低.  相似文献   

14.
Heavy metal oxide glasses, containing bismuth and/or lead in their glass structure are new alternatives for rare eart (RE) doped hosts. Hence, the study of the structure of these vitreous systems is of great interest for science and technology. In this research work, GeO(2)-PbO-Bi(2)O(3) glass host doped with Er(3+)/Yb(3+) ions was synthesized by a conventional melt quenching method. The Fourier transform infrared (FTIR) results showed that PbO and Bi(2)O(3) participate with PbO(4) tetragonal pyramids and strongly distort BiO(6) octahedral units in the glass network, which subsequently act as modifiers in glass structure. These results also confirmed the existence of both four and six coordination of germanium oxide in glass matrix.  相似文献   

15.
采用高温固相熔融法制备Tm3+/Yb3+、Ho3+/Yb3+和Tm3+/Ho3+/Yb3+掺杂钠铝碲酸盐陶瓷。用X射线衍射分析钠铝碲酸盐陶瓷的结构,结合974nm激光激发的上转换荧光,探讨上转换荧光强度与激发功率的关系。根据计算Tm3+/Ho3+/Yb3+掺杂样品上转换荧光色坐标,研究荧光色坐标与激发功率的关系。结果表明:钠铝碲酸盐陶瓷整体上呈无序结构,但存在少量α-Al2O3。由于Tm3+的上转换蓝光发射属三光子过程,Tm3+/Ho3+/Yb3+掺杂体系中,蓝光发光强度随激发功率增加而迅速增长的趋势比绿光和红光的更为明显。随着激发功率的增大,色坐标在1931CIE色品图中沿左下方朝蓝绿区方向移动,实现了上转换荧光的色彩变换。  相似文献   

16.
章昌华  郭明  涂伟萍  许立信 《精细化工》2020,37(3):584-589,597
以环氧氯丙烷为交联剂,将聚酰胺胺树状大分子(PAMAM)接枝到稻草基体上,利用FTIR、SEM、XRD、TG等对其结构进行了表征和分析。考察了其对Nd~(3+)、Sm~(3+)、La~(3+)稀土金属离子的吸附性能,探讨了吸附时间、稀土金属离子浓度、吸附温度、溶液pH等因素对吸附性能的影响。同时对吸附过程的动力学、吸附等温线和吸附热力学进行了研究。结果表明,所制备的吸附剂对Nd~(3+)、Sm~(3+)、La~(3+)稀土金属离子的吸附平衡时间约为4 h,平衡吸附量分别为47.14、40.11和50.12 mg/g。吸附过程符合拟二级动力学模型和Freundlich等温线,表明此吸附过程是属于化学吸附过程。吸附热力学研究表明,此吸附过程是自发进行的,同时吸附过程是一个混乱度增加的熵增过程。  相似文献   

17.
制备 Pb(Zn_(1/3)Nb_(2/3))O_3(PZN)基陶瓷电容器,最主要的问题是形成有害于介电性质的焦录石相。实验表明,固相反应法很难合成钙钛矿结构的 PZN 陶瓷,于1000经固相反应的产物是含立方焦录石的混合物,在 PZN 中添加0.53mol 的 PFW,试样中的钙钛矿相超过97%。通过对 Pb(Fe_(2/3)W_(1/3))O_3(PFW)结晶化学和烧结机理的分析,证明在 PZN 中添加 PFW 能减少或抑制焦录石的形成。本文报导了 PZN-PFW 二元系陶瓷的相关系和介电性质,探讨了钙钛矿相的形成机理。  相似文献   

18.
采用传统的陶瓷工艺制备了0.94[0.9405(K0.5Na0.5)NbO3-0.0095(Bi0.5Na0.5)TiO3-0.05LiSbO3]-0.06NaTaO3(简称KNN-BNT-LS-NT)+xmol%CuO(0≤x≤2.0)陶瓷,研究了其晶体结构、压电、介电以及铁电性质,并对Cu2+在A、B位取代做了详细的分析讨论。结果表明,Cu2+的加入能显著提高陶瓷的机械品质因数Qm和降低其介电损耗tanδ,当加入1.5mol%的Cu2+在时,取得较佳的性能,即d33=183pC/N、Qm=166、tanδ=0.0135。  相似文献   

19.
采用提拉法生长出了钨酸铋钠[NaBi(WO4)2,NBW]、钨酸钇钠[NaY(WO4)2,NYW]和钨酸钆钠[NaGd(WO4)2,NGW]晶体.通过热重-差热分析(tbermogravimetry-differential thermal analysis,TG-DTA),X射线衍射(X-ray diffraction,XRD)分析对晶体进行表征.由TG-DTA曲线得到NBW,NYW和NGW晶体的熔点分别为937.7,1210.0℃和1 252.8℃.XRD分析表明:3种晶体都属于四方晶系、白钨矿结构、I41/a空间群.计算了3种晶体的晶胞参数,NBW晶体的晶胞参数要大于NYW和NGW晶体的.测试了晶体的红外光谱及Raman光谱,分析了晶体的振动模式,并将晶体振动光谱进行归属.通过比较认为三者结构基本相同.  相似文献   

20.
Summary For neutral and FeCl3-doped poly(3-butylthiophene) (P3BT) and poly(3-dodecylthiophene) (P3DDT), conductivity measurement and thermal analysis are performed. Before doping, the glass transition temperatures (Tg) of the P3BT and P3DDT are 75.4°C and 5.6°C respectively. No melting transition of an ordered phase for P3BT is observed. But for P3DDT, the melting temperatures of ordered side chains and main chains are 56.1°C and 116.3°C respectively. Upon doping, the Tg 's shift upward to 150.5°C and 51.2°C for P3BT and P3DDT respectively and the two melting peaks of the ordered phases of P3DDT disappear. The dopant anions decompose in the range of about 150 to 230°C. The conductivities increase with increasing temperature and reach maxima at 135°C and 28°C and drop sharply in the range of 160–200°C and 130–170°C for P3BT and P3DDT respectively. This indicates that the thermal motion of the main chains would lead to a drop of conductivity due to thermal undoping, while the dopant decomposition would lead to a rapid loss of conductivity and an occurrence of crosslinking reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号