首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 779 毫秒
1.
A series of N,N'-disubstituted cyclic urea 3-benzamides has been synthesized and evaluated for HIV protease inhibition and antiviral activity. Some of these benzamides have been shown to be potent inhibitors of HIV protease with Ki < 0.050 nM and IC90 < 20 nM for viral replication and, as such, may be useful in the treatment of AIDS. The synthesis and quantitative structure-activity relationship for this benzamide series will be discussed.  相似文献   

2.
Five sulfur-containing analogues of 2,3-oxidosqualene (OS) were evaluated as inhibitors of squalene:hopene cyclase (SHC) from Alicyclobacillus acidocaldarius. In these analogues, sulfur replaces carbons at C-6, C-10, C-14, C-18, or C-19 of OS. Each analogue was a submicromolar inhibitor of SHC with IC50 values ranging from 60 to 570 nM. Enzyme inhibition kinetic analysis was performed using homogeneous recombinant A. acidocaldarius SHC. While analogues 9 (S-14, Ki = 109 nM, kinact = 0.058 min-1) and 11 (S-19, Ki = 83 nM, kinact = 0.054 min-1) were time-dependent inhibitors of SHC, analogues 7 (S-6, Ki = 127 nM) and 8 (S-10, Ki = 971 nM) showed no time dependency with SHC. Analogue 10 (S-18) was the most potent inhibitor and showed time-dependent irreversible inhibition (Ki = 31 nM, kinact = 0.071 min-1). Kinetic analysis for the five analogues with purified rat liver OSLC was conducted to compare the vertebrate and prokaryotic enzymes. Affinity labeling experiments, using either [17-3H]10 or [22-3H]10 with crude and with pure recombinant SHC, clearly showed specific labeling. A single major radioactive band at 72 kDa on SDS-PAGE indicated that irreversible covalent modification of SHC had occurred. These results suggest that the presence of sulfur at C-18 of OS can interrupt the cyclization and that an intermediate partially cyclized cation may be captured by a nucleophilic residue of the SHC active site.  相似文献   

3.
Resistance of HIV-1 to protease inhibitors has been associated with changes at residues Val82 and Ile84 of HIV-1 protease (HIV PR). Using both an enzyme assay with a peptide substrate and a cell-based infectivity assay, we examined the correlation between the inhibition constants for enzyme activity (Ki values) and viral replication (IC90 values) for 5 active site mutants and 19 protease inhibitors. Four of the five mutations studied (V82F, V82A, I84V, and V82F/I84V) had been identified as conferring resistance during in vitro selection using a protease inhibitor. The mutant protease genes were expressed in Escherichia coli for preparation of enzyme, and inserted into the HXB2 strain of HIV for test of antiviral activity. The inhibitors included saquinavir, indinavir, nelfinavir, 141W94, ritonavir (all in clinical use), and 14 cyclic ureas with a constant core structure and varying P2, P2' and P3, P3' groups. The single mutations V82F and I84V caused changes with various inhibitors ranging from 0.3- to 86-fold in Ki and from 0.1- to 11-fold in IC90. Much larger changes compared to wild type were observed for the double mutation V82F/I84V both for Ki (10-2000-fold) and for IC90 (0.7-377-fold). However, there were low correlations (r2 = 0.017-0.53) between the mutant/wild-type ratio of Ki values (enzyme resistance) and the mutant/wild-type ratio of viral IC90 values (antiviral resistance) for each of the HIV proteases and the viruses containing the identical enzyme. Assessing enzyme resistance by "vitality values", which adjust the Ki values with the catalytic efficiencies (kcat/Km), caused no significant improvement in the correlation with antiviral resistance. Therefore, our data suggest that measurements of enzyme inhibition with mutant proteases may be poorly predictive of the antiviral effect in resistant viruses even when mutations are restricted to the protease gene.  相似文献   

4.
As long as the threat of human immunodeficiency virus (HIV) protease drug resistance still exists, there will be a need for more potent antiretroviral agents. We have therefore determined the crystal structures of HIV-1 protease in complex with six cyclic urea inhibitors: XK216, XK263, DMP323, DMP450, XV638, and SD146, in an attempt to identify 1) the key interactions responsible for their high potency and 2) new interactions that might improve their therapeutic benefit. The structures reveal that the preorganized, C2 symmetric scaffolds of the inhibitors are anchored in the active site of the protease by six hydrogen bonds and that their P1 and P2 substituents participate in extensive van der Waals interactions and hydrogen bonds. Because all of our inhibitors possess benzyl groups at P1 and P1', their relative binding affinities are modulated by the extent of their P2 interactions, e.g. XK216, the least potent inhibitor (Ki (inhibition constant) = 4.70 nM), possesses the smallest P2 and the lowest number of P2-S2 interactions; whereas SD146, the most potent inhibitor (Ki = 0.02 nM), contains a benzimidazolylbenzamide at P2 and participates in fourteen hydrogen bonds and approximately 200 van der Waals interactions. This analysis identifies the strongest interactions between the protease and the inhibitors, suggests ways to improve potency by building into the S2 subsite, and reveals how conformational changes and unique features of the viral protease increase the binding affinity of HIV protease inhibitors.  相似文献   

5.
The inhibition of cysteine proteases is being studied as a strategy to combat parasitic diseases such as Chagas' disease, leishmaniasis, and malaria. Cruzain is the major cysteine protease of Trypanosoma cruzi, the etiologic agent of Chagas' disease. A crystal structure of cruzain, covalently inactivated by fluoromethyl ketone inhibitor 1 (Cbz-Phe-Ala-FMK), was used as a template to design potential inhibitors. Conformationally constrained gamma-lactams containing electrophilic aldehyde (12, 17, 18, 25, 26, and 29) or vinyl sulfone (43, 44, and 46) units were synthesized. Constrained lactam 26 had IC50 values of ca. 20 nM against the Leishmania major protease and ca. 50 nM versus falcipain, an important cysteine protease isolated from Plasmodium falciparum. However, all of the conformationally constrained inhibitors were weak inhibitors of cruzain, compared to unconstrained peptide aldehyde (e.g. 5 ) and vinyl sulfone inhibitors (e.g. 48, which proved to be an excellent inhibitor of cruzain with an apparent second order inhibition rate constant (k(inact)/Ki) of 634,000s(-1)M(-1). A significant reduction in activity was also observed with acyclic inhibitors 30 and 51 containing alpha-methyl phenylalanine residues at the P2 position. These data indicate that the pyrrolidinone ring, especially the quarternary center at P2, interferes with the normal substrate binding mode with cruzain, but not with falcipain or the leishmania protease.  相似文献   

6.
HTLV-I is an oncogenic retrovirus that is associated with adult T-cell leukemia. HTLV-I protease and HTLV-I protease fused to a deca-histidine containing leader peptide (His-protease) have been cloned, expressed, and purified. The refolded proteases were active and exhibited nearly identical enzymatic activities. To begin to characterize the specificity of HTLV-I, we measured protease cleavage of peptide substrates and inhibition by protease inhibitors. HTLV-I protease cleavage of a peptide representing the HTLV-I retroviral processing site P19/24 (APQVLPVMHPHG) yielded Km and kcat values of 470 microM and 0.184 s-1 while cleavage of a peptide representing the processing site P24/15 (KTKVLVVQPK) yielded Km and kcat values of 310 microM and 0.0060 s-1. When the P1' proline of P19/24 was replaced with p-nitro-phenylalanine (Nph), the ability of HTLV-I protease to cleave the substrate (APQVLNphVMHPL) was improved. Inhibition of HTLV-I protease and His-protease by a series of protease inhibitors was also tested. It was found that the Ki values for inhibition of HTLV-I protease and His-protease by a series of pepsin inhibitors ranged from 7 nM to 10 microM, while the Ki values of a series of HIV-1 protease inhibitors ranged from 6 nM to 127 microM. In comparison, the Ki values for inhibition of pepsin by the pepsin inhibitors ranged from 0.72 to 19.2 nM, and the Ki values for inhibition of HIV-1 protease by the HIV protease inhibitors ranged from 0.24 nM to 1.0 microM. The data suggested that the substrate binding site of HTLV-I protease is different from the substrate binding sites of pepsin and HIV-1 protease, and that currently employed HIV-1 protease inhibitors would not be effective for the treatment of HTLV-I infections.  相似文献   

7.
The protein kinase C (PKC) inhibitors Ro 318220 and GF 109203X have been used in over 350 published studies to investigate the physiological roles of PKC. Here we demonstrate that these inhibitors are not selective for PKC isoforms as was previously assumed. Ro 318220 inhibited MAPKAP kinase-1beta (also known as Rsk-2) in vitro (IC50 3nM) more potently than it inhibited mixed PKC isoforms (IC50 5 nM), and it also inhibited p70 S6 kinase (IC50 15 nM). GF 109203X also potently inhibited MAPKAP kinase-1beta (IC50 50 nM) and p70 S6 kinase (IC50 100 nM) with similar potency to PKC isoforms (IC50 30 nM). The inhibition of MAPKAP kinase-1beta, p70 S6 kinase, and probably other protein kinases, may explain many of the effects previously attributed to PKC.  相似文献   

8.
The structural basis of ligand specificity in human immunodeficiency virus (HIV) protease has been investigated by determining the crystal structures of three chimeric HIV proteases complexed with SB203386, a tripeptide analogue inhibitor. The chimeras are constructed by substituting amino acid residues in the HIV type 1 (HIV-1) protease sequence with the corresponding residues from HIV type 2 (HIV-2) in the region spanning residues 31-37 and in the active site cavity. SB203386 is a potent inhibitor of HIV-1 protease (Ki = 18 nM) but has a decreased affinity for HIV-2 protease (Ki = 1280 nM). Crystallographic analysis reveals that substitution of residues 31-37 (30's loop) with those of HIV-2 protease renders the chimera similar to HIV-2 protease in both the inhibitor binding affinity and mode of binding (two inhibitor molecules per protease dimer). However, further substitution of active site residues 47 and 82 has a compensatory effect which restores the HIV-1-like inhibitor binding mode (one inhibitor molecule in the center of the protease active site) and partially restores the affinity. Comparison of the three chimeric protease structures with those of HIV-1 and SIV proteases complexed with the same inhibitor reveals structural changes in the flap regions and the 80's loops, as well as changes in the dimensions of the active site cavity. The study provides structural evidence of the role of the 30's loop in conferring inhibitor specificity in HIV proteases.  相似文献   

9.
A broad screening program previously identified phenprocoumon (1) as a small molecule template for inhibition of HIV protease. Subsequent modification of this lead through iterative cycles of structure-based design led to the activity enhancements of pyrone and dihydropyrone ring systems (II and V) and amide-based substitution (III). Incorporation of sulfonamide substitution within the dihydropyrone template provided a series of highly potent HIV protease inhibitors, with structure-activity relationships described in this paper. Crystallographic studies provided further information on important binding interactions responsible for high enzymatic binding. These studies culminated in compound VI, which inhibits HIV protease with a Ki value of 8 pM and shows an IC90 value of 100 nM in antiviral cell culture. Clinical trials of this compound (PNU-140690, Tipranavir) for treatment of HIV infection are currently underway.  相似文献   

10.
The structure-activity relationship study of one of recently described aromatase inhibitors, compound 1 (MR20814), allowed us to design some related derivatives as potential new inhibitors. Among those we synthesized, chlorophenylpyridylmethylenetetrahydroindolizinone 5 (MR20492) exhibited in vitro a ten-fold higher inhibition of the enzyme (IC50 = 0.2 +/- 0.0 microM and Ki = 10.3 +/- 3.3 nM).  相似文献   

11.
Toward establishing the general efficacy of using trisubstituted cyclopropanes as peptide mimics to stabilize extended peptide structures, the cyclopropanes 20a-d were incorporated as replacements into 9-13, which are analogues of the known HIV-1 protease inhibitors 14 and 15. The syntheses of 20a-d commenced with the Rh2[5(S)-MEPY]4-catalyzed cyclization of the allylic diazoesters 16a-d to give the cyclopropyl lactones 17a-d in high enantiomeric excess. Opening of the lactone moiety using the Weinreb protocol and straightforward refunctionalization of the intermediate amides 18a-d gave 20a-d. A similar sequence of reactions was used to prepare the N-methyl-2-pyridyl analogue 28. Coupling of 20a-d and 28 with the known diamino diol 22 delivered 9-13. Pseudopeptides 9-12 were found to be competitive inhibitors of wild-type HIV-1 protease in biological assays having Kis of 0.31-0.35 nM for 9, 0.16-0.21 nM for 10, 0.47 nM for 11, and 0.17 nM for 12; these inhibitors were thus approximately equipotent to the known inhibitor 14(IC50 = 0.22 nM) from which they were derived. On the other hand 13 (Ki = 80 nM) was a weaker inhibitor than its analogue 15 (Ki = 0.11 nM). The solution structures of 9 and 10 were analyzed by NMR spectroscopy and simulated annealing procedures that included restraints derived from homo- and heteronuclear coupling constants and NOEs; because of the molecular symmetry of9 and 10, a special protocol to treat the NOE data was used. The final structure was checked by restrained and free molecular dynamic calculations using an explicit DMSO solvent box. The preferred solution conformations of 9 and 10 are extended structures that closely resemble the three-dimensional structure of 10 bound to HIV-1 protease as determined by X-ray crystallographic analysis of the complex. This work convincingly demonstrates that extended structures of peptides may be stabilized by the presence of substituted cyclopropanes that serve as peptide replacements. Moreover, the linear structure enforced in solution by the two cyclopropane rings in the pseudopeptides 9-12 appears to correspond closely to the biologically active conformation of the more flexible inhibitors 14 and 15. The present work, which is a combination of medicinal, structural, and quantum chemistry, thus clearly establishes that cyclopropanes may be used as structural constraints to reduce the flexibility of linear pseudopeptides and to help enforce the biologically active conformation of such ligands in solution.  相似文献   

12.
We have developed and applied a computational strategy to increase the affinity of fullerene-based inhibitors of the HIV protease. The result is a approximately 50-fold increase in affinity from previously tested fullerene compounds. The strategy is based on the design of derivatives which may potentially increase hydrophobic desolvation upon complex formation, followed by the docking of the hypothetical derivatives into the HIV protease active site and assessment of the model complexes so formed. The model complexes are generated by the program DOCK and then analyzed for desolvated hydrophobic surface. The amount of hydrophobic surface desolvated was compared with a previously tested compound, and if this amount was significantly greater, it was selected as a target. Using this approach, two targets were identified and synthesized, using two different synthetic approaches: a diphenyl C60 alcohol (5) based on a cyclopropyl derivative of Bingel (Chem.Ber. 1993, 126, 1957-1959) and a diisopropyl cyclohexyl C60 alcohol (4a) as synthesized by Ganapathi et al. (J. Org.Chem. 1995, 60, 2954-2955). Both showed tighter binding than the originally tested compound (diphenethylaminosuccinate methano-C60, Ki = 5 microM) with Ki values of 103 and 150 nM, respectively. In addition to demonstrating the utility of this approach, it shows that simple modification of fullerenes can result in high-affinity ligands of the HIV protease, for which they are highly complementary in structure and chemical nature.  相似文献   

13.
The lack of an experimentally determined structure of a target protein frequently limits the application of structure-based drug design methods. In an effort to overcome this limitation, we have investigated the use of computer model-built structures for the identification of previously unknown inhibitors of enzymes from two major protease families, serine and cysteine proteases. We have successfully used our model-built structures to identify computationally and to confirm experimentally the activity of nonpeptidic inhibitors directed against important enzymes in the schistosome [2-(4-methoxybenzoyl)-1-naphthoic acid, Ki = 3 microM] and malaria (oxalic bis[(2-hydroxy-1-naphthylmethylene)hydrazide], IC50 = 6 microM) parasite life cycles.  相似文献   

14.
MyristoylCoA: protein N-myristoyltransferase (NMT) catalyzes the cotranslational covalent attachment of a rare cellular fatty acid, myristate, to the N-terminal Gly residue of a variety of eukaryotic proteins. The myristoyl moiety is often essential for expression of the biological functions for these proteins. Attachment of C14:0 alone provides barely enough hydrophobicity to allow stable association with membranes. The partitioning of N-myrisotylproteins is therefore often modulated by "switches" that function through additional covalent or noncovalent modifications. Candida albicans, the principal cause of systemic fungal infection in immunocompromised humans, contains a single NMT gene that is essential for its viability. The functional properties of the acylCoA binding site of human and C. albicans NMT are very similar. However, there are distinct differences in their peptide binding sites. An ADP ribosylation factor (Arf) is included among the few cellular protein substrates of the fungal enzyme. Alanine scanning mutagenesis of an octapeptide derived from an N-terminal Arf sequence (GLYASKLS-NH2) disclosed that Gly1, Ser5, and Lys6 play predominant roles in binding. ALYASKLS-NH2 is an inhibitor competitive for peptide [Ki(app) = 15.3 +/- 6.4 microM] and noncompetitive for myristoylCoA. Remarkably, replacement of the N-terminal tetrapeptide with an 11-aminoundecanoyl group results in a competitive inhibitor (11-aminoundecanoyl-SKLS-NH2) that is approximately 40-fold more potent [Ki(app) = 0.40 +/- 0.03 microM] than the starting octapeptide. Removal of Leu-Ser from the C-terminus generates a competitive dipeptide inhibitor (11-aminoundecanoyl-SK-NH2) with a Ki(app) of 11.7 +/- 0.4 microM, equivalent to that of the starting octapeptide. A derivative dipeptide inhibitor containing a C-terminal N-cyclohexylethyl lysinamide moiety has the advantage of being more potent (IC50 = 0.11 +/- 0.03 microM) and resistant to digestion by cellular carboxypeptidases. Rigidifying the flexible aminoundecanoyl chain results in very potent general NMT inhibitors (IC50 = 40-50 nM). Substituting a 2-methylimidazole for the N-terminal amine and adding a benzylic alpha-methyl group with R stereochemistry to the rigidifying element produces even more potent inhibitors (IC50 = 20-50 nM) that are up to 500-fold selective for the fungal compared to human enzyme. A related less potent member of this series of compounds is fungistatic. Its growth inhibitory effects are associated with a reduction in cellular protein N-myristoylation, judged using cellular Arf as a reporter. These studies establish that NMT is a new antifungal target.  相似文献   

15.
Olopatadine (AL-4943A; KW-4679) [(Z)-11-[3-(dimethylamino)propylidene]-6, 11-dihydrodibenz[b,e]oxepine-2-acetic acid hydrochloride] is an antiallergic/antihistaminic drug under development for topical ocular use. The effects of the compound on release of proinflammatory mediators (histamine, tryptase and prostaglandin D2) from monodispersed human conjunctival mast cells were assessed. Histamine receptor subtype binding affinities and functional potencies were determined with ligand binding and phosphoinositide turnover assays, respectively. Olopatadine inhibited the release of histamine, tryptase and prostaglandin D2, in a concentration-dependent manner (IC50 = 559 microM). Evaluation of the interaction of olopatadine with histamine receptors revealed a relatively high affinity for the H1 receptor (Ki = 31.6 nM, pKi = 7.5 +/- 0.1, n = 7) but lower affinities for H2 receptors (Ki = 100 microM, pKi = 4.0 +/- 0.19, n = 7) and H3 receptors (Ki = 79.4 microM, pKi = 4.1 +/- 0.16, n = 7). The H1 selectivity of olopatadine was superior to that of other ocularly used antihistamines studied, such as ketotifen, levocabastine, antazoline and pheniramine. The profiling of olopatadine in 42 nonhistamine receptor binding assays revealed that olopatadine interacts with only two nonhistamine receptor/uptake sites to any significant degree (pIC50 < or = 5-6). Olopatadine inhibited histamine-induced phosphoinositide turnover in human conjunctival epithelial cells (IC50 = 10 nM, pIC50 = 8.0, n = 4) and in other human ocular cells (IC50 = 15.8-31.6 nM, pIC50 = 7.5-7.8) and exhibited apparent noncompetitive antagonist properties in these cells, with an estimated dissociation constant (Kb) of 19.9 nM (pKb = 7.7, n = 6). This combination of mast cell mediator release inhibition and selective H1 receptor antagonism suggests that olopatadine may be particularly useful in the treatment of ocular allergic diseases. Indeed, olopatadine has recently shown clinical efficacy in an allergic conjunctivitis model in human subjects.  相似文献   

16.
To gain greater understanding of the structural basis of human immunodeficiency virus (HIV) protease ligand specificity, we have crystallized and determined the structures of the HIV-1 protease (Val32Ile, Ile47Val, Val82Ile) triple mutant and simian immunodeficiency virus (SIV) protease in complex with SB203386, a tripeptide analogue inhibitor containing a C-terminal imidazole substituent as an amide bond isostere. SB203386 is a potent inhibitor of HIV-1 protease (Ki = 18 nM) but shows decreased inhibition of the HIV-1 protease (Val32Ile, Ile47Val, Val82Ile) triple mutant (Ki = 112 nM) and SIV protease (Ki = 960 nM). Although SB203386 binds in the active site cavity of the triple mutant in a similar fashion to its binding to the wild-type HIV-1 protease [Abdel-Meguid et al. (1994) Biochemistry 33, 11671], it binds to SIV protease in an unexpected mode showing two inhibitor molecules each binding to half of the active site. Comparison of these two structures and that of the wild-type HIV-1 protease bound to SB203386 reveals that HIV protease ligand specificity is imparted by residues outside of the catalytic pocket, which causes subtle changes in its shape. Furthermore, this work illustrates the importance of structural studies in order to understand the structure-activity relationship (SAR) between related enzymes.  相似文献   

17.
A series of inhibitors of factor Xa (FXa) were investigated using the thrombin generation assay to evaluate the potency and specificity needed to efficiently block thrombin generation in activated human plasma. By inhibiting FXa the generation of thrombin in plasma is delayed and decreased. Inhibitor concentrations which cause 50 percent inhibition of thrombin generation (IC50) correlate in principle with the Ki values for inhibition of free FXa. Recombinant tick anticoagulant peptide (r-TAP) is able to inhibit thrombin generation with considerably low IC50 values of 49 nM and 37 nM for extrinsic and intrinsic activation, respectively. However, the potent synthetic, low molecular weight inhibitors of FXa (Ki values of about 20 nM) are less effective in inhibiting the generation of thrombin with IC50 values at micromolar concentrations. The overall effect of inhibitors of FXa in the thrombin generation assay was compared to that of thrombin inhibitors. On the basis of similar Ki values for the inhibition of the respective enzyme, synthetic FXa inhibitors are less effective than thrombin inhibitors. In contrast, the highly potent FXa inhibitor r-TAP causes a stronger reduction of the thrombin activity in plasma than the most potent thrombin inhibitor hirudin.  相似文献   

18.
The A2a-adenosine binding subunit from rabbit striatal membranes was solubilized using 1% 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate and was characterized using the antagonist radioligand [3H]8-[4-[[[[2-aminoethyl)amino]carbonyl]methyl]oxy] phenyl]-1,3-dipropylxanthine (XAC). The solubilized receptor was very stable, with 55% of the specific [3H]XAC binding remaining after storage for 15 days at 4 degrees C. The dissociation constant (Kd) for binding of [3H]XAC to solubilized A2 receptors was determined in saturation studies to be 4.0 nM, with a Bmax of 600 fmol/mg protein. Xanthine inhibitors displaced the specific binding of the adenosine antagonist [3H]XAC (in the presence of 50 nM 8-cyclopentyl-1,3-dipropylxanthine) at 25 degrees C, with Ki values consonant with the expected affinities at A2a receptors. Binding of [3H]XAC (1 nM) or the adenosine agonist [3H]2-(carboxyethylphenylethylamino)adenosine-5'-N-ethyl carboxamide (5 nM) to A2a receptors was diminished in the presence of 0.1 M Na+ in both membranes and solubilized preparations. Agonist binding was increased (by 280% for membranes and 180% for solubilized receptors), and antagonist binding was decreased in the presence of 10 mM Mg2+. Displacement of [3H]XAC by the agonist (R)-N6-phenylisopropyladenosine was biphasic, corresponding to high (IC50 = 188 nM, RH = 30%) and low (IC50 = 9730 nM, RL = 70%) affinity sites. Preincubation with 100 microM GTP (10 mM Mg2+) converted the high affinity binding to low affinity, suggesting that receptor and G-protein are dissociated by the guanine nucleotide. The solubilized receptor was more easily inactivated by exposure to the reducing agent dithiothreitol (IC50 = 3 mM) than in membranes (IC50 = 220 mM), suggesting increased accessibility of structurally essential disulfide bridges.  相似文献   

19.
Some epimeric 20-hydroxy, 20-oxime, 16 alpha, 17 alpha-, 17,20- and 20,21-aziridine derivatives of progesterone were synthesized and evaluated as inhibitors of human 17 alpha-hydroxylase/C17,20-lyase (P450(17) alpha) and 5 alpha-reductase (5 alpha-R). The reduction of 16-dehydropregenolone acetate (3a) was reinvestigated. NaBH4 in the presence of CeCl3 gave better stereo-selectivity for 20 beta-ol [20 alpha/20 beta-OH (4 alpha/4 beta) = 1/2.7] than LTBAH or the Meerwein-Pondroff method reported; reduction with Zn in HOAc formed exclusively 20 alpha-ol (4 alpha b). The 20 alpha- and 20 beta-hydroxy-4,16-pregnadien-3-one (9 alpha) and (9 beta) were synthesized from the alcohols 4 alpha b and 4 beta b. Several 20-oxime pregnadienes and 16 alpha, 17 alpha-, 17,20- and 20,21-aziridinyl-5-pregnene derivatives were also synthesized. LiAlH4 reduction of the 16-en-20-oxime (12b) yielded 20 (R)-(13a) and 20(S)-17 alpha,20-aziridine (13b) and 20(R)-17 beta,20-aziridine (14a). Several compounds inhibited the human P450(17) alpha with greater potency than ketoconzole. The 5 alpha-R enzyme assay showed that while (9 alpha) did not have any activity, (9 beta) and (3b) were potent 5 alpha-reductase (IC50 = 21 and 31 nM) inhibitors with activities similar to finasteride. The 20-oximes (17a) and (17b) were potent dual inhibitors for both 5 alpha-R (IC50 = 63 and 115 nM, compared to 33 nM for finasteride) and P450(17) alpha (IC50 = 43 and 25 nM, compared to 78 nM for ketoconazole).  相似文献   

20.
Previously we reported the discovery of amidothiophenesulfonamides as endothelin receptor-A antagonists with high potency and selectivity. Replacement of an amide group in this class of compounds with an acetyl group maintained the in vitro binding affinity and in vivo activity while providing a compound with oral bioavailability and longer duration of action. The optimal compound discovered during these studies, 15q (TBC11251), binds competitively to human ETA receptors with a Ki of 0.43 +/- 0.03 nM and an IC50 of 1.4 nM (IC50 for ETB = 9800 nM). This compound inhibits ET-1-induced stimulation of phosphoinositide turnover with a Ki of 0.686 nM and a pA2 of 8.0. The compound has a serum half-life in the rat and the dog of 6-7 h and 60-100% oral bioavailability. This compound is one of the most selective ETA antagonists reported and therefore is suitable for additional pharmacological and clinical investigation of the role of ETA receptors in diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号