首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
The coldest possible brightness temperatures observed by a downward-looking microwave radiometer from space are often produced by calm oceans under cloud-free skies and very low humidity. This set of conditions tends to occur with sufficient regularity that an orbiting radiometer will accumulate a useful number of observations within a period of a few days to weeks. Histograms of the radiometer's coldest measurements provide an anchor point against which very small drifts in absolute calibration can be detected. This technique is applied to the TOPEX microwave radiometer (TMR), and a statistically significant drift of several tenths of a Kelvin per year is clearly detected in one of the channels. TMR housekeeping calibration data indicates a likely cause for the drift, as small changes in the isolation of latching ferrite circulators that are used in the onboard calibration-switch assembly. This method can easily be adapted to other microwave radiometers, especially imagers operating at frequencies in the atmospheric windows. In addition to detecting long-term instrument drifts with high precision, the method also provides a means for cross-calibrating different instruments. The cold reference provides a common tie point, even between sensors operating at different polarizations and/or incidence angles  相似文献   

2.
The athors evaluate the ability of a dual-frequency radar (C and Ku band) altimeter to detect rain events. A TOPEX/Poseidon (T/P) altimeter rain flag for the year 1994 is compared to collocated rain rate (RR) from the Defense Meteorological Satellite Program's Special Sensor Microwave Imager (DMSP SSM/I), as processed to the TOPEX/Poseidon passive radiometer's (TMR) liquid-water content, and to a 34-year climatology of shipboard present-weather reports compiled by G. W. Petty (1995). The altimeter-SSM/I analysis is couched in terms of the tradeoff between the probability of a false positive and the probability of a failure to detect rain. The authors show that the ability of the SSM/I and TMR datasets to detect precipitation are closer to each other than to either the altimeter or the shipboard climatology, and this difference is accentuated at latitudes poleward of 45°. They argue that the different footprint sizes explain only part of this discrepancy. They propose that the difference at high latitudes is caused by the altimeter data's sensitivity to snow. In order to detect precipitation (as opposed to detecting bad altimetric values or out-of-range altimetric corrections), a TMR-only flag with liquid-water content of 600 μm recovers too few rain events, 400 μm is close to climatological moderate-to heavy intensity rains, and 200 μm is close to rain of any intensity. For the same purpose, a combined altimeter and TMR flag, with a TMR threshold of 100 μm and with the Ku radar cross section 1.5 standard deviations below an average Ku/C curve, gives the best match for climatological precipitation of any intensity class  相似文献   

3.
For pt.II see ibid., vol.33, no.1, p.138-46 (1995). The sole mission function of the TOPEX/Poseidon microwave radiometer (TMR) is to provide corrections for the altimeter range errors induced by the highly variable atmospheric water vapor content. The three TMR frequencies are shown to be near-optimum for measuring the vapor-induced path delay within an environment of variable cloud cover and variable sea surface flux background. After a review of the underlying physics relevant to the prediction of 5-40 GHz nadir-viewing microwave brightness temperatures, the authors describe the development of the statistical, two-step algorithm used for the TMR retrieval of path delay. Test simulations are presented which demonstrate the uniformity of algorithm performance over a range of cloud liquid and sea surface wind speed conditions. The results indicate that the inherent algorithm error (assuming noise free measurements and an exact physical model) is less than 0.4 cm of retrieved path delay for a global representation of atmospheric conditions. An algorithm error budget is developed which predicts an overall algorithm accuracy of 0.9 cm when modeling uncertainties are included. When combined with expected TMR antenna and brightness temperature accuracies, an overall measurement accuracy of 1.2 cm for the wet troposphere range correction is predicted  相似文献   

4.
The TOPEX/Poseidon radar altimeter satellite applies advances in remote sensing instrumentation to reduce long wavelength measurement errors to dramatically lower levels. The TOPEX altimeter measures the range to the ocean surface with 2-cm precision and accuracy through the use of both Ku- and C-band radars, a high pulse repetition frequency, an agile tracker, and absolute internal height calibration. Dual pulse bandwidths for both frequencies make it possible to quickly acquire the surface and begin tracking after crossing the land/ocean boundary. The altimeter requirements and the elements of the altimeter design that have resulted in meeting these requirements are presented. Prelaunch test data, based on the use of a radar altimeter system evaluator to simulate the backscatter from the ocean surface, are presented to demonstrate that the TOPEX altimeter will meet these requirements and provide the data necessary to the understanding of basin scale mean circulation  相似文献   

5.
The research that has been conducted in the Space Geodesy Branch at NASA/Goddard Space Flight Center in preparation for meeting the 13-cm radial orbit accuracy requirement for the TOPEX/Poseidon (T/P) mission is described. New developments in modeling the Earth's gravitational field and modeling the complex nonconservative forces acting on T/P are highlighted. The T/P error budget is reviewed, and a prelaunch assessment of the predicted orbit determination accuracies is summarized  相似文献   

6.
For pt.I see ibid., vol.33, no.1, p.125-37 (1995). The calibrated antenna temperatures measured by the TOPEX Microwave Radiometer are used to derive radiometric brightness temperatures in the vicinity of the altimeter footprint. The basis for the procedure devised to do this-the antenna pattern correction and brightness temperature algorithm-is described in the paper, along with its associated uncertainties. The algorithm is based on knowledge of the antenna pattern, the ground-based measurements of which are presented along with their analyses. Using the results of these measurements, the authors perform an error analysis that yields the net uncertainties in the derived TMR footprint brightness temperatures. The net brightness temperature uncertainties range from 0.79 to 0.88 K for the three TMR frequencies, and include the radiometer calibration uncertainties which range from 0.54 to 0.57 K. the authors also derive an estimate of the uncertainty incurred by using brightness temperatures measured in the ~40 km TMR footprint to estimate path delay in the ~3 km altimeter footprint. The RMS difference in path delay averaged over the largest TMR footprint relative to that in the altimeter footprint is estimated to be about 0.3 cm. Finally, the authors discuss the error associated with using unequal beams at the three TMR frequencies to derive path delays, and describe an approach using along-track averaging of the algorithm brightness temperatures to reduce this error  相似文献   

7.
多通道扫描成像辐射计热设计   总被引:1,自引:0,他引:1  
多通道扫描成像辐射计是FY-4卫星的主要载荷之一,可实现对地的多光谱观测.辐射计在轨运行期间承受复杂的外热流环境,为保证高质量的成像品质,必须对其进行有效的热设计,根据地球静止轨道和辐射计构型特点,分析了热设计的特点,并对仪器进行详细的热设计和热分析,计算结果证明了热设计方案的合理性.  相似文献   

8.
Addition of a radar to a scanning microwave radiometer is shown to be simple and to consume little power. Since both the radar and the radiometer receive signals having the statistical properties of noise, both receivers may use the Dicke synchronous detection system, provided the radar receives enough independent samples. Application of the combined instrument to spacecraft measurement both of oceanic winds and waves and of precipitation has more promise than the use of either instrument alone, since they can, in part, calibrate each other. An aircraft imaging radar radiometer has potential for applications where superposition of the thermal radiometer image on a relatively static radar image will aid in interpretation.  相似文献   

9.
星载微波成像辐射计定标方法比较和研究   总被引:1,自引:0,他引:1  
刘高峰 《微波学报》2012,28(S1):440-442
微波成像辐射计用于大气微波遥感、海洋微波遥感和陆地微波遥感;是气象、海洋和灾害监测的重要遥感手段之一。微波 成像辐射计在轨运行时能否获取有价值的探测资料,得到定量化的应用和真正的业务使用,主要取决于微波成像仪能否进行精确定 标。本文主要介绍了星载微波成像辐射计目前国际上通常采用的两种定标方法,馈源口面定标方法和天线口面定标方法,并对这两 种方法进行了比较和研究。  相似文献   

10.
Global ocean tide models that can provide tide corrections to TOPEX/Poseidon altimeter data are described. Emphasis is given to the Schwiderski and Cartwright-Ray models, as these are the most comprehensive, highest resolution models, but other models that will soon appear are mentioned. Differences between models for M2 often exceed 10 cm over vast stretches of the ocean. Comparisons to 80 selected pelagic and island gauge measurements indicate the Schwiderski model is more accurate for the major solar tides, the Cartwright-Ray for the major lunar tides. The adequacy of available tide models for studying basin-scale motions is probably marginal at best, although rapid advancement is expected over the next several years  相似文献   

11.
A passive/active WS-band (PALS) microwave aircraft instrument to measure ocean salinity and soil moisture has been built and tested. Because the L-band brightness temperatures associated with salinity changes are expected to be small, it was necessary to build a very sensitive and stable system. This new instrument has dual-frequency, dual polarization radiometer and radar sensors. The antenna is a high beam efficiency conical horn. The PALS instrument was installed on the NCAR C-130 aircraft and soil moisture measurements were made in support of the Southern Great Plains 1999 experiment in Oklahoma from July 8-14, 1999. Data taken before and after a rainstorm showed significant changes in the brightness temperatures, polarization ratios and radar backscatter, as a function of soil moisture. Salinity measurement missions were flown on July 17-19, 1999, southeast of Norfolk, VA, over the Gulf Stream. The measurements indicated a clear and repeatable salinity signal during these three days, which was in good agreement with the Cape Hatteras ship salinity data. Data were also taken in the open ocean and a small decrease of 0.2 K was measured in the brightness temperature, which corresponded to the salinity increase of 0.4 psu measured by the M/V Oleander vessel  相似文献   

12.
The paper discusses application of active and passive microwave data for assessment of time and space variations of first-year ice cover. The Caspian and Aral seas are chosen as main study areas. The Caspian Sea evolution is primarily climate driven, while for the Aral Sea there is a mix of anthropic and climate factors. We analyze ice cover conditions using a novel method that combines active and passive satellite measurements for ice discrimination. This method uses the synergy of simultaneous data from active (radar altimeter) and passive (radiometer) microwave instruments onboard the TOPEX/Poseidon (T/P) satellite, launched in 1992. The benefits, drawbacks, and potential of ice cover studies using the proposed method are discussed. We analyze in detail how this method is influenced by the difference in footprints of the T/P sensors and by the radiometric properties of ice and snow at different stages of ice cover evolution. In order to link the T/P-derived results to historical observations that end in the mid-1980s, long time series of passive microwave data from SMMR and SSM/I sensors have also been analyzed. Satellite time series of ice cover extent and duration of ice period have been obtained for the Caspian and Aral seas since 1978. A good agreement is obtained between historical and satellite data, with significant spatial and temporal variability of ice conditions. There is a marked decrease of both duration of ice season and ice extent during the winters 1998/1999-2001/2002. These satellite-derived time series of sea ice parameters are very valuable in view of the heterogeneous and mostly unpublished data on ice conditions over the Caspian and Aral seas since the mid-1980s.  相似文献   

13.
Absolute calibration of WindSat's third and fourth Stokes brightness temperatures (T/sub 3/ and T/sub 4/) is needed at the tenth of Kelvin level in order to adequately resolve their dependence on wind direction. Previous aircraft based fully polarimetric microwave radiometers have generally relied on "circle flights", during which a single area of the ocean is observed at all azimuth angles, to estimate residual biases in the calibration of its polarimetric channels. WindSat, the first spaceborne fully polarimetric microwave radiometer, operates in low Earth orbit and thus cannot execute this traditional calibration technique. A new method is presented to estimate the residual biases that are present in WindSat's T/sub 3/ and T/sub 4/ estimates. The method uses a vicarious cold reference brightness temperature applied to measurements made by WindSat at /spl plusmn/45/spl deg/ slant linear (T/sub P/ and T/sub M/) and left- and right-hand circular (T/sub L/ and T/sub R/) polarization. WindSat derives the third and fourth Stokes brightness temperatures by the differences T/sub P/-T/sub M/ and T/sub L/-T/sub R/, respectively. The method is demonstrated by applying it to the 10.7-GHz WindSat observations. Calibration biases of 0.2-0.6 K are determined with a precision of 0.04 K.  相似文献   

14.
The effects of rain on TOPEX/Poseidon altimeter data   总被引:2,自引:0,他引:2  
The presence of rain in the sub-satellite track can significantly degrade altimeter measurements by causing an attenuation of the backscattered signal, a change in its path length through the atmosphere and a change in the mean square slope of the sea surface. This can cause errors, not only in the measurement of the satellite altitude, but also in the determination of wind speed and wave height. TOPEX/Poseidon dual-frequency altimeter data (cycles 3 and 8) were searched for instances where the data were possibly degraded by the presence of rain over the North and inter-Tropical Atlantic. A subjective analysis of the data, similar to the one used in previous studies was conducted on the backscatter coefficient, wind speed, significant wave height, sea surface height, TOPEX Microwave Radiometer (TMR) brightness temperatures, liquid water content and data quality flags to identify the orbits possibly affected by rain. From the 105 probable rain events identified, the effects of rain on the TOPEX measurements and data quality parameters were characterized. The strong differential effect of rain on the Ku and C band measurements was then used to define a new rain flag based on a departure from the normal relationship between the C and Ku band backscatter. This new rain flag was shown to detect all the identified rain events, as well as new ones. The TMR rain flag, used operationally, was shown to flag too many altimeter samples and too few rain events, mainly because of its large resolution (few tens of kilometers compared to few kilometers for the altimeter). An estimation of the rainfall rate from the attenuation of the Ku band backscatter was proposed  相似文献   

15.
Range measurements made by satellite radar altimeters experience an electromagnetic (EM) bias toward the troughs of ocean waves. Measurements taken with the NASA altimeter on the TOPEX/Poseidon satellite in a series of aircraft flights during the Surface Wave Dynamics Experiment (SWADE) indicate that EM bias is slightly higher at 5.3 GHz than at 13.6 GHz, and that the magnitudes of both biases increase with increasing wind speed, as does their difference. Tower, airborne, and satellite measurements show a consistency in the characteristics of the wind speed dependence but suggest that bias decreases with increasing altitude. The airborne measurements appear to be the most reasonable basis for correcting the NASA altimeter range data from the TOPEX/POSEIDON satellite. A preliminary analysis of data acquired at 20.3 m/s in the Southern Ocean Waves Experiment (SOWEX) has given confidence that the quadratic models for the prelaunch EM bias corrections are more appropriate for wind speed dependence than linear models  相似文献   

16.
17.
Atmospheric absorption in the 600-Gc/s region was measured throughout the actual atmosphere by means of a DICKE-type superheterodyne radiometer receiver using second harmonic mixing. The average measured value of horizontal attenuation was approximately 34 dB/km/g/m3. The variation of water vapor absorption with respect to water vapor density was also indicated in the measured results. The minimum detectable temperature difference (ΔT)MINwas obtained by calculating the rms value of output deflection and the use of the calibration curve for the radiometer. The best value achieved was 5.2°K. From this result, the radiometer receiver noise figure and the mixer conversion loss were able to be determined indirectly. The results were 33.2 dB and 26.4 dB, respectively. A thermal calibrator was used to adjust and calibrate the radiometer, and as a source of radiation for the measurement program.  相似文献   

18.
Postlaunch calibration of the WindSat polarimetric microwave radiometer indicates the presence of thermal gradients across the calibration warm load during some portions of the year. These gradients are caused by reflected solar illumination or eclipse and increase total calibration errors. This paper describes the WindSat warm load and presents the measured on-orbit data which clearly illustrate the anomalous responses seen in the warm load calibration data. Detailed thermal modeling predictions of the WindSat on-orbit performance are presented along with the satellite orbital geometry model with solar inputs in order to explain the physical causes of the thermal gradients. To reduce the resultant calibration errors during periods of anomalous warm load behavior, a correction algorithm was developed which uses the physical temperatures of the gain stages in the receiver electronics to calculate an effective gain. This calibration algorithm is described, and its performance and expected accuracy are examined.  相似文献   

19.
The Global Positioning System (GPS) can be applied in a number of ways to track remote sensing satellites at altitudes below 3000 km with accuracies of better than 10 cm. All techniques use a precise global network of GPS ground receivers operating in concert with a receiver aboard the user satellite, and all estimate the user orbit, GPS orbits, and selected ground locations simultaneously. The GPS orbit solutions are always dynamic, relying on the laws of motion, while the user orbit solution can range from purely dynamic to purely kinematic (geometric). Two variations show considerable promise. The first one features an optimal synthesis of dynamics and kinematics in the user solution, while the second introduces a novel gravity model adjustment technique to exploit data from repeat ground tracks. These techniques, to be demonstrated on the TOPEX/Poseidon mission in 1992, will offer subdecimeter tracking accuracy for dynamically unpredictable satellites down to the lowest orbital altitudes  相似文献   

20.
This paper describes the optics design and field-of-view (FOV) calibration for five radiometers covering 114-660 GHz which share a common antenna in the Microwave Limb Sounder instrument on the National Aeronautics and Space Administration's Aura satellite. Details of near-field pattern measurements are presented. Estimated systematic scaling uncertainties (3/spl sigma/) on calibrated limb emissions, due to FOV calibration uncertainties, are below 0.4%. 3/spl sigma/ uncertainties in beamwidth and relative pointing of radiometer boresights are 0.006/spl deg/ and 0.003/spl deg/, respectively. The uncertainty in modeled instrument response, due to the scan dependence of FOV patterns, is less than /spl plusmn/0.24 K equivalent black-body temperature. Refinements to the calibration using in-flight data are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号