首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The microwave dielectric properties and crystal structure of Ba(Zn1/3Ta2/3)O3– (Sr,Ba)(Ga1/2Ta1/2)O3 ceramics were investigated in the present study. The Q value of Ba(Zn1/3Ta2/3)O3 was improved by adding 5 mol% Sr(Ga1/2Ta1/2)O3. The maximum Q value of Q × f = 162000 GHz was obtained at 0.95Ba(Zn1/3Ta2/3)O3. 0.05Sr(Ga1/2Ta1/2)O3. For this composition, a lattice super structure caused by hexagonal ordering was observed. A further improvement in the Q value was attained when some Sr was replaced with Ba, and 0.95Ba(Zn1/3Ta2/3)O3· 0.05(Sr0.25Ba0.75)(Ga1/2Ta1/2)O3 exhibited a maximum Q value such that Q × f = 210000 GHz. Despite the increased Q value with the replacement of Sr by Ba, the c/a value, which indicates the degree of lattice distortion, remained constant near 3/2. The Q value thus improved without lattice distortion in the system Ba(Zn1/3Ta2/3)O3-(Sr,Ba)(Ga1/2Ta1/2)O3, whereas the improvement of Q value increased with lattice distortion in the solid solution system with Ba(Zn1/3Ta2/3)O3 as an end member.  相似文献   

2.
The dielectric ceramic materiala Ba(Zn1/3Ta2/3)O3–BaZrO3 has extremely low dielectric loss at microwave frequencies. To investigate the lattice vibrations of Ba(Zn,Ta)O3 and Ba(Zr, Zn, Ta)O3 solid solutions, far infrared reflection spectra were measured from 50 to 4000 cm−1 using a Fourier transform infrared spectrometer. These data were analyzed according to the classical dispersion theory. The spectra of Ba(Zn,Ta)O3 are well fitted by using the 14 resonant modes, and the spectra of Ba(Zr, Zn, Ta)O3 solid solution are fitted by assuming the normal distribution on resonant frequencies. The damping constant of these materials is discussed, and the values of tan δ calculated from the dispersion parameters agree with the measured values.  相似文献   

3.
The hexagonal perovskite, Ba8ZnTa6O24, was prepared in single-phase form and was found to be a stable secondary phase, formed as a result of the loss of ZnO from Ba(Zn1/3Ta2/3)O3 microwave dielectrics. The experimental and calculated X-ray patterns of Ba8ZnTa6O24 indicate it is isostructural with Ba8Ta6NiO24 with an 8H (cchc)2 close-packed BaO3 stacking sequence and the lattice parameters, a =10.0825(14), c =19.0587(38)Å. High-density ceramics of Ba8ZnTa6O24 could be prepared at temperatures considerably lower (1400°C) than those used to sinter pure Ba(Zn1/3Ta2/3)O3, and exhibit very good microwave dielectric properties with ɛ=30.5, Q f=62 300, and τf=+36 ppm/°C at 8.9 GHz.  相似文献   

4.
The dielectric properties at microwave frequencies of Ba(Zn1/3Ta2/3)O3 ceramics prepared by sintering were investigated. These ceramics had lower density but higher loss quality than ceramics hot-pressed at 1400°C. Loss quality was greatly improved by prolonged sintering. The Q of the ceramics measured by the dielectric resonator method was 14 000 at 12 GHz. The ceramics were investigated by X-ray diffraction analysis. It was found that Q improvement corresponds with increased Zn and Ta ordered structures in the ceramics.  相似文献   

5.
The phase stabilities in the(1−x)Ba(Zn1/3Ta2/3)O3 (BZT)-xBaZrO3(BZ)system have been investigated using samples prepared by the mixed oxide method. The substitution of Zr4+destabilizes the 1:2 cation ordering in BZT and pro-motes the formation of a cubic, 1:1 ordered structure with a doubled perovskite repeat. The homogeneity range of the 1:1 phase extends from x = 0.04 to approximately x = 0.25; substitutions beyond this range stabilize a disordered perovskite. The limits of stability of the 1:1 ordering coin-cide with compositions previously found to exhibit anoma-lies in their dielectric loss. The range of homogeneity is consistent with a "random layer" model for the 1:1 ordered "Ba{β';1/2β1/2}O3" structure. In this model the B× positions are assumed to be occupied exclusively by Ta5+, and the b× sites by a random distribution of Zn2+, Zr4+, and the remaining Ta 5+ cations. The validity of the model, where the ordered solid solutions can be represented by Ba{[Zn2− y /3Ta(1−2 y )/3Zr y ]1/2[Ta]1/2}O3(y =2x)was con-firmed by Rietveld refinements conducted using data col-lected with a synchrotron X-ray source.  相似文献   

6.
Microstructures of ordered Ba(Cd1/3Ta2/3)O3 perovskite dielectric ceramics with and without a boron additive have been observed by atomic resolution transmission electron microscopy (TEM). The selected area electron diffraction and lattice image show a well-ordered structure with hexagonal symmetry (lattice constants of a ∼5.8 Å and c ∼7.1 Å) in the ordered Ba(Cd1/3Ta2/3)O3 with a boron additive, which is similar to those in ordered Ba(Zn1/3Ta2/3)O3 and Ba(Mg1/3Ta2/3)O3 ceramics. Ordered domains with a twin crystallographic relationship and high-density domain interfaces induced by ordering were observed in the ordered Ba(Cd1/3Ta2/3)O3 without a boron additive sintered at a relatively high temperature. Atomic resolution TEM further revealed the conservative twin boundaries along (001) and (110) planes and non-conservative antiphase boundaries with a projected displacement vector of the type [001] in the ordered Ba(Cd1/3Ta2/3)O3 without a boron additive. Finally, the energetics of different domain interfaces are discussed with the interfacial structures in ordered Ba(Cd1/3Ta2/3)O3 ceramics revealed by an electron microscope.  相似文献   

7.
Loss of ZnO explains the improved microwave loss quality (Q) for Ba(Zn1/3Ta2/3)O3 ceramics which have been sintered at high temperatures or longer times. Ordering of Zn and Ta is complete in 60 h at 1400°C, but crystallographic distortion and Q continue to increase up to 120 h. As ZnO volatilizes from the sample, Ba replaces Zn on the B sites and permits additional crystallographic distortion; meanwhile, barium tantalate phases also appear. Crystallographic compositional data are presented to confirm this interpretation.  相似文献   

8.
The dielectric properties of the Ba (Co1/3 Nb2/3)O3–Ba(Zn1/3Nb2/3)O3 system were determined. Ba (Co1/3 Nb2/3)O3–Ba(Zn1/3Nb2/3)O3 has a complex perovskite structure, a high dielectric constant, a low dielectric loss, and a low temperature coefficient of the resonant frequency. A solid-solution ceramic with 0.7Ba (Co1/3 Nb2/3)O3·0.3 Ba(Zn1/3Nb2/3)O3 has a dielectric constant of K=33.5, Q=11000 at 6.5 GHz, and a temperature coefficient of the resonant frequency of τf=0 ppm/°C. The temperature coefficient of resonant frequency can be varied by changing the composition. The Q values of the ceramics can be increased by annealing in a nitrogen atmosphere. These ceramics can be used for resonant elements and stabilized oscillators.  相似文献   

9.
Perovskite developments in the Pb(Zn1/3Ta2/3)O3–PbTiO3 system were explored. Formation yields and lattice parameters of the perovskite were determined from X-ray diffractometry results. Weak-field low-frequency dielectric properties of the system ceramics were investigated, followed by microstructure examination. Perovskite started to develop in Pb(Zn1/3Ta2/3)O3 after the introduction of 30 mol% PbTiO3, whereas complete stabilization was accomplished at 60% substitution. Dielectric relaxation behavior was not substantial across the entire composition range, whereas phase transition modes changed from diffuse to sharp with increased PbTiO3 fraction.  相似文献   

10.
Ca(Mg1/3Nb2/3)O3 and Ba(Zn1/3Nb2/3)O3 ceramic cylinders with the same diameter were bonded by adhesive with low dielectric loss to yield the layered dielectric resonators, and the microwave dielectric characteristics were evaluated with TE01δ mode. With increasing the Ba(Zn1/3Nb2/3)O3 thickness fraction, the resonant frequency ( f 0) decreased, while the effective dielectric constant (ɛ r ,eff) and temperature coefficient of resonant frequency (τ f ) increased. Good microwave dielectric characteristics were attained for the samples with the Ba(Zn1/3Nb2/3)O3 thickness fraction of 0.5: ɛ r ,eff=34.33, Q × f =57 930 GHz and τ f =2.6 ppm/°C. Finite-element method was used to predict the microwave dielectric characteristics of the layered resonators and good agreements were attained between the experimental results and predicted ones. Also, both experiment and finite-element analysis indicated that the effects of the adhesive on f 0, ɛ r ,eff, and τ f were slight, while that on Q × f value was significant.  相似文献   

11.
Physical and microwave dielectric properties of complex perovskite Ba(Mg1/3Ta2/3)O3 ceramics have been investigated as a function of the amount of BaWO4 in the temperature range from 20° to 80°C at 10.5 GHz. Up to 0.05 mol BaWO4 addition, the lattice constant ratio ( c/a ), ordering parameter, apparent density, and unloaded Q all increase, due to the increase in the substitution of Ta5+ ions of Ba(Mg1/3Ta2/3)O3 by W6+ ions from the melted BaWO4 at above 1430°C. With further addition of BaWO4, the unloaded Q decreases, due to an increase of the BaWO4 phase. The temperature coefficient of resonant frequency (TCF) can be controlled by the volume mixture rule of Ba(Mg1/3Ta2/3)O3 and BaWO4. When 0.09 mol BaWO4 is added, TCF becomes 0 ppm/°C.  相似文献   

12.
Low-loss dielectric ceramics based on Ba(B'1/2Ta1/2)O3 (B'=La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Y, Yb, and In) complex perovskites have been prepared by the solid-state ceramic route. The dielectric properties (ɛr, Q u, and τf) of the ceramics have been measured in the frequency range 4–6 GHz by the resonance method. The resonators have a relatively high dielectric constant and high quality factor. Most of the compounds have a low coefficient of temperature variation of the resonant frequencies. The microwave dielectric properties have been improved by the addition of dopants and by solid solution formation. The solid solution Ba[(Y1− x Pr x )1/2Ta1/2]O3 has x =0.15, with ɛr=33.2, Q u× f =51,500 GHz, and τf≈0. The microwave dielectric properties of Ba(B'1/2Ta1/2)O3 ceramics are found to depend on the tolerance factor ( t ), ionic radius, and ionization energy.  相似文献   

13.
Nanocrystalline Pb(Zn1/3Ta2/3)O3 (PZTa) of perovskite structure, which cannot be synthesized by either the conventional solid-state reaction of mixed oxides or wet chemistry routes, has been successfully synthesized via a mechanical activation route. The effects of PbTiO3 (PT) doping in PZTa on the phase formation, thermal stability of the nanocrystalline perovskite phase, and dielectric properties of the resulting PZTa–PT are studied. PZTa doped with a low PT content exhibited a diffuse phase transition, while those with high PT contents demonstrated an expected sharp phase transition at the Curie temperature.  相似文献   

14.
Ca(Mg1/3Nb2/3)O3 (CMN) and Ba(Zn1/3Nb2/3)O3 (BZN) ceramic disks were stacked with three stacking schemes, designated as CMN/BZN, CMN/BZN/CMN, and BZN/CMN/BZN, to yield layered dielectric resonators, and the microwave dielectric characteristics were evaluated with the TE01δ mode. Both experiments and finite element analysis showed that the microwave dielectric characteristics of the layered resonator were determined not only by the volume fraction of BZN but also by the stacking scheme. For each stacking scheme, a good combination of microwave dielectric characteristics with an effective dielectric constant of 34.33–34.52, a Q × f value of 58 800–62 080 GHz, and a near-zero temperature coefficient of resonant frequency could be achieved by adjusting the volume fraction of BZN. The effects of the stacking scheme on the microwave dielectric characteristics of the temperature-stable layered resonator were discussed by combining finite element analysis and dielectric composite models.  相似文献   

15.
The sol–gel method has been developed for the preparation of pure Ba(Mg1/3Ta2/3)O3 ceramics. This involves the reaction of the heterometallic alkoxide Ta2Mg(OEt)12 with hydrated barium hydroxide Ba(OH)2·8H2O. Complete crystallization of the sol–gel-derived powder is achieved at 600°C, leading to a cubic perovskite type phase. After sintering at 1400°C (2–5 h), a trigonal cell arises from Mg–Ta ordering (the degree of order is greater than 0.9), and about 98.5% of the theoretical density is obtained. Preliminary microwave dielectric measurements show that the dielectric constant and the unloaded Q u of the ceramics are 24.2 and 6750, respectively, at 7.7 GHz.  相似文献   

16.
A narrow region of Zn-vacancy-containing cubic perovskites was formed in the (1− x )Ba3(ZnNb2)O9−( x )Ba3W2O9 system up to 2 mol% substitution ( x =0.02). The introduction of cation vacancies enhanced the stability of the 1:2 B-site ordered form of the structure, Ba(Zn1− x x )1/3(Nb1− x W x )2/3O3, which underwent an order–disorder transition at 1410°C, ∼35° higher than pure Ba(Zn1/3Nb2/3)O3. The Zn vacancies also accelerated the kinetics of the ordering reaction, and samples with x =0.006 comprised large ordered domains with a high lattice distortion ( c/a =1.226) after a 12 h anneal at 1300°C. The tungstate-containing solid solutions can be sintered to a high density at 1390°C, and the resultant ordered ceramics exhibit some of the highest microwave dielectric Q factors ( Q × f =1 18 000 at 8 GHz) reported for a niobate-based perovskite.  相似文献   

17.
The Sr(B'0.5Ta0.5)O3 ceramics where B'=La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Y, Er, and Yb have been prepared by the conventional solid-state ceramic route and their microwave dielectric properties have been investigated. The structure and microstructure of the ceramics have been characterized by X-ray diffraction and scanning electron microscope techniques. The relative permittiviy (ɛr) varies linearly with B'-site ionic radii, except for La, and the temperature coefficient of resonant frequency (τf) varies linearly with the tolerance factor. The Sr(B'0.5Ta0.5)O3 ceramics have ɛr in the range 25.9–32, Q u× f =4500–54 300 GHz, and τf=−79 to −42 ppm/°C. A slight deviation from stoichiometry affects the dielectric properties of these double perovskites. Partial substitution of Ba for Sr could tune the dielectric properties. Addition of rutile (TiO2) lowered the sintering temperature and improved the dielectric properties of Sr(B'0.5Ta0.5)O3 ceramics.  相似文献   

18.
The 1/3 <111>-type ordering of Ba(Zn1/3Ta2/3)O3 (BZT) can be transformed to 1/2 <111>–type ordering by substituting the La3+ cation into the A site. The 1/3 <111> ordering in BZT is shown to be reduced, discontinued, and then replaced by 1/2 <111> ordering, using X–ray diffraction, electron microscopy, and Raman spectroscopy. On the other hand, potassium–substituted BZT only displays a reduction in the degree of ordering.  相似文献   

19.
The effect of ZrO2 on crystallographic order, microstructure, and microwave dielectric properties of Ba(Zn1/3Ta2/3)O3 (BZT) ceramics was investigated. A small amount of ZrO2 disturbed the 1:2 cation ordering. The average grain size of the BZT significantly increased with the addition of ZrO2, which was attributed to liquid-phase formation. The relative density increased with the addition of a small amount of ZrO2, but it decreased when the ZrO2 content was increased. Variation of the dielectric constant with ZrO2 addition ranged between 27 and 30, and the temperature coefficient of resonant frequency increased abruptly as the ZrO2 amount exceeded 2.0 mol%. The Q value of the BZT significantly improved with the addition of ZrO2, which could be explained by the increased relative density and grain size. The maximum Q × f value achieved in this investigation was ∼164 000 GHz for the BZT with 2.0 mol% ZrO2 sintered at 1550°C for 10 h.  相似文献   

20.
Single-phase perovskites were formed in the (1−x)Ba(Zn1/3Nb2/3)O3-( x )La(Zn2/3Nb1/3)O3 system for compositions with 0.0≤ x ≤0.6. Although the stability of the trigonal "1:2" ordered structure of the Ba(Zn1/3Nb2/3)O3 end member is very limited (0.0≤ x ≤0.05), low levels of lanthanum induce a transformation to a cubic, "1:1" ordered structure that has a broad range of homogeneity (0.05≤ x ≤0.6). Samples with x > 0.6 were comprised of La3NbO7, ZnO, and a perovskite with x = 0.6. The cubic 1:1 phases were fully ordered and no evidence was found for a compositionally segregated microstructure. These observations could not be reconciled in terms of a "space-charge" model; rather, they supported a charge-balanced, "random-site" structure for the 1:1 cation-ordered Ba(β1/21/2")O3 phases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号