首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
铁炭微电解—混凝沉淀—MBBR工艺处理腈纶废水   总被引:1,自引:0,他引:1  
腈纶废水对微生物活性具有不良影响,采用铁炭微电解—混凝沉淀-MBBR工艺对其进行处理.通过正交试验,探索了铁炭微电解预处理腈纶废水的最佳工艺条件;再以MBBR为生物反应器,进一步处理经过铁炭微电解预处理的腈纶废水.结果表明,最终出水COD可稳定至100 mg/L以下,氨氮接近15 mg/L.该工艺是处理腈纶废水的有效方...  相似文献   

2.
采用EF-H2O2-Fe Ox—絮凝处理含油乳化废水。结果表明,电解电压8 V,pH=2.5,电解反应时间75 min,PAM投加质量浓度为2 mg/L时,对含油乳化废水的处理效果最佳,COD的去除率最高可达93%以上。此方法具有高效、去除效果好、经济适用等优点,在含油废水的处理领域具有广阔的应用前景。  相似文献   

3.
田存萍  郭士元 《辽宁化工》2015,(1):25-26,31
针对橡胶助剂废水的特点,提出应用微电解-Fenton氧化联合工艺预处理此类废水。实验结果表明:微电解-Fenton氧化联合的预处理工艺可以提高废水的可生化性,再加上后续的生化处理,整套工艺可以使废水COD从4 127 mg/L降至240 mg/L,脱除率达到94%。  相似文献   

4.
采用铁碳微电解和水解酸化组合工艺对高浓度水性涂料废水进行预处理。研究了铁碳微电解的停留时间和p H对COD去除率的影响,随着停留时间的增大,铁碳微电解对COD的去除率先逐渐增大,后变缓;随着水性涂料废水p H的降低,铁碳微电解对COD去除率逐渐增大;当停留时间为3 h,p H为3时,铁碳微电解对涂料废水的去除率达到75%。采用铁碳微电解-水解酸化进行连续性预处理试验,涂料废水的进水COD为12000 mg/L,出水的COD为1950 mg/L,组合工艺对COD的去除率达到83. 8%。  相似文献   

5.
采用微波耦合铁碳微电解技术对石化废水进行预处理,并对预处理前后水样中有机物的变化进行分析。结果表明,原水CODCr为10 500 mg/L,在废水pH值为3、铁碳投加量为20%、微波功率为700 W,经微波辐射5 min处理后,出水CODCr为2 370 mg/L左右,COD去除率稳定在77%左右,提高了废水的可生化性。GC-MS和三维荧光分析结果均表明,微波耦合铁碳微电解处理后,试验废水中有机物的数量及浓度大幅降低。结合后续生化处理,可以达到三级污水综合排放标准(GB 8978-1996)。微波耦合铁碳微电解可作为石化废水的有效预处理方法。  相似文献   

6.
《水处理技术》2021,47(10):66-70,74
采用一步水热法制备了氟改性TiO_2,对其进行了表征。根据金属零部件加工清洗废水的水质特点,提出Fe/C微电解-Fenton氧化联合光催化处理废水。结果表明,清洗废水体积为80 mL,活性半焦用量0.75 g,初始pH为3,Fe、C质量比2:1,双氧水(H_2O_2的质量分数30%)添加量为1.8 mL,废水COD由6 248 mg/L降低至218 mg/L;光催化氧化深度处理时,100 mL预处理后废水,在紫外灯照射下,双氧水添加量为4 mL,氟改性TiO_2光催化剂用量为0.8 g/L,F1.5-TiO2样品(F与Ti的摩尔比为1.5)光催化氧化降解废水效果最佳,反应3 h后COD降低至122 mg/L。  相似文献   

7.
探究了破乳混凝沉淀预处理结合微电解耦合Fenton氧化工艺对煤层气产出水的降解效果。结果表明,微电解耦合Fenton氧化工艺,在微电解pH为3.0,曝气强度为150 L/h,Fenton氧化反应pH为3.5,H2O2投加量为800mg/L的条件下,微电解COD去除率为66.85%,Fenton氧化反应COD去除率为60.30%,综合COD去除率达86.84%,整体工艺最终出水COD为174.21 mg/L,悬浮物质量浓度为2.64 mg/L,石油类质量浓度为1.21 mg/L,整体工艺的悬浮物去除率为99.01%,石油类去除率为97.40%,COD去除率为93.14%,实现了煤层气产出废水的高效处理。  相似文献   

8.
采用物化(铁碳微电解、催化氧化)预处理高浓度废水后,利用水解酸化—A/O工艺处理混合废水,处理量为80 m~3/d。运行实践表明:处理出水COD低于500 mg/L,氨氮低于35 mg/L,出水水质达到接管要求,预处理工艺的COD去除率达64%,硝基苯去除率达94%,效果明显。  相似文献   

9.
铁炭微电解联合O/A/O生物工艺处理化工废水   总被引:2,自引:0,他引:2  
研究铁炭微电解预处理与复合生物工艺对某一利用制药与染料工艺废水生产大苏打厂排放的高杂混合化工废水的处理效果.铁炭微电解预处理可提高该废水的可生化性,降低COD和色度,并能有效去除硫化物.该预处理对硫化物的去除率高达99%.经历40d的驯化启动阶段,后续复合生物反应器开始正常运行.后续生物处理可使出水COD维持在700 mg/L,总COD去除率80%~86%.这些结果为应用铁炭微电解与O/A/O复合生物工艺治理高杂混合化工废水提供一定的参考.  相似文献   

10.
农药草甘膦生产废水处理的研究   总被引:14,自引:2,他引:14  
运用微电解絮凝床预处理和UASB-SBR组合处理草甘膦废水。试验结果表明;当进水ρ(CODCr)为26000~30000mg/L,ρ(Cl-)为33000~35000mg/L时,处理后出水ρ(CODCr)小于130mg/L,CODCr平均去除率可达99%以上。  相似文献   

11.
铁炭微电解—厌氧—好氧工艺处理制浆造纸废水   总被引:2,自引:1,他引:1  
针对某制浆造纸废水的特性,采用铁炭微电解—厌氧—好氧组合处理工艺。实验结果表明:当进水CODCr为2 500 mg/L,色度为300倍时,铁炭微电解预处理,不仅去除了40%的CODCr和80%的色度,还大幅提高了废水的可生化性,B/C从0.23提高到0.42;微电解出水经过厌氧和好氧处理,CODCr去除率分别为70%和55%,最终出水CODCr在250 mg/L以下,色度为50倍,达到《造纸工业水污染物排放标准》(GB 3544—2001)二级排放标准。  相似文献   

12.
利用微电解-Fenton组合工艺对油田压裂废水展开预处理研究,以COD去除率为考察指标,单独工艺正交试验结果表明:微电解的最优反应条件为Fe/C摩尔比2∶3、铁碳投加量50 g/L、反应时间60 min、pH值3;Fenton反应的最优条件为p H值3、反应时间90 min、H_2O_2加量12 m L/L、H_2O_2/Fe~(2+)摩尔比30。在最佳条件下,微电解和Fenton反应的COD去除率分别可达56.87%和45.61%,废水COD值由3 715 mg/L降至867.9 mg/L,总去除率达到76.54%。出水水质满足油田现场循环回用的标准。  相似文献   

13.
采用混凝沉淀-微电解组合工艺预处理再生造纸废水。通过实验,考察了混凝单元药剂选择、药剂投量以及沉淀时间、微电解单元的初始pH、铁炭用量、铁炭比、反应时间以及出水pH对预处理效果的影响,确定了该工艺的最佳条件。结果表明,选择氢氧化钙为混凝剂,用量为4 g/L,沉淀时间为40 min,微电解的初始pH为3.0,铁炭总量为20g/L,铁炭比为3:1,反应时间为40 min,出水pH为8.0时再生造纸废水的COD、氨氮、总磷、SS和BOD5的去除率分别达到52.88%、43.08%、93.61%、91.64%和33.19%。同时可生化性由0.32提高到0.46,减小了后续生化处理工艺负荷。  相似文献   

14.
采用铁炭微电解法对苯胺废水进行预处理,微电解的作用使苯胺废水中的大部分苯胺降解,而且出水中含有足够的Fe2+,从而减少了催化氧化过程中双氧水的消耗量。结果表明:当进水苯胺、CODCr的质量浓度分别为204、448mg/L,色度为500倍时,在最佳工艺条件(微电解工艺的铁炭体积比1∶1、废水pH值为5,停留时间90min;催化氧化工艺条件为双氧水(30%)用量0.3mL/L,pH值调节至5,反应时间60min)下,该方法对苯胺的去除率为95.32%,对CODCr的去除率达到66.96%,色度的去除率为92%。  相似文献   

15.
采用物化(电催化氧化、铁炭微电解)预处理高、中浓度混合废水后,利用厌氧+两级A/O工艺处理综合废水,处理量为300 m3/d。运行实践表明:物化预处理对COD的去除率为32%,整个工艺处理后出水COD低于500 mg/L,氨氮低于35 mg/L,盐分低于0.6%,出水水质达到接管要求,工艺处理效果明显。  相似文献   

16.
宋青松 《山西化工》2023,(1):188-190
采用铁炭微电解预处理技术,以南通宏信化工苯酐生产车间富马酸废水为研究对象,考察了废水p H、停留时间、铁炭质量比、铁屑用量、曝气量对CODCr去除率的影响。实验结果表明:当废水p H=3,曝气反应100 min,曝气量为10 L/min,铁炭质量比3∶1,铁屑用量为25 g/L时,成水的CODCr去除率最高,达到55.92%。  相似文献   

17.
电-Fenton法处理模拟含油废水影响因素的研究   总被引:1,自引:0,他引:1  
李国庆  高湘 《安徽化工》2010,36(4):63-66
采用电-Fenton法对模拟含油废水进行处理。实验结果表明:影响除油率的因素主次顺序为:pH值、电解电压、反应时间、初始含油浓度、电解质浓度。单因素分析得出电-Fenton法处理模拟含油废水的最优反应条件:pH值为2.5,电解电压为10V,反应时间为60min,初始含油浓度为100mg/L,电解质浓度为30g/L。在最优条件下除油率达到50.5%。  相似文献   

18.
曝气催化铁炭微电解预处理THF废水的实验研究   总被引:6,自引:1,他引:5  
方大伟  杨永忠  房发俐 《应用化工》2009,38(9):1391-1394
分别用普通铁炭微电解法和曝气催化铁炭微电解法处理THF废水。结果表明,普通铁炭微电解工艺的处理效果与Fe/C质量比、pH值、反应时间等因素有关;采用曝气催化铁炭微电解工艺预处理四氢呋喃废水,在反应时间为120 m in、进水COD为10 000 mg/L左右、pH<4时,对COD的去除率>70%,较普通铁炭微电解工艺有明显的提高,且不易发生板结。  相似文献   

19.
针对某制膜企业废水COD值高,可生化性差的水质特点,在原有MBR(膜生物反应器)生化处理的基础上,增加曝气微电解-混凝/离心-催化电氧化对该制膜废水进行预处理,提高废水的可生化性,使通过MBR处理的废水达标排放。现场测定结果表明,预处理设备运行效果良好,整套系统处理出水COD100mg/L、BOD20mg/L、NH3-N10 mg/L。催化电氧化预处理与MBR生化联合工艺在高浓度难生化有机废水处理方向上具有比较好的应用前景。  相似文献   

20.
朱维廷 《广东化工》2013,(15):142-144
利用微电解-Fenton氧化法深度处理某石化企业含油废水。正交实验结果表明,进水含油量为20~30 mg/L时,在Fe/Cu/C质量比为2∶1∶1条件下,三元微电解最佳工艺参数:初始pH为5,液固比为2∶1,反应时间为75 min;单因素实验确定Fenton氧化法最佳工艺参数:H2O2投加量为1.0 mL/L,废水pH为5,反应时间为40 min。在以上条件下,总除油率可达96%~98%,出水含油量可达工业回用水标准,实现废水循环利用目的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号