首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以制浆造纸厂固体废弃物芦苇湿法备料废渣为原料,发酵制备生物乙醇为主线,同时可得到副产品低聚木糖和粗木素。结果表明,1吨的芦苇备料废渣经过球磨碱预处理、纤维素酶解,并在发酵条件为酵母菌用量1%、时间24h的条件下可以制得151kg的生物乙醇;同时其发酵残液中的半纤维素经过半纤维素酶解和脱色、脱盐精制可得到127.5kg的饲料级低聚木糖产品;从发酵残渣可制得350kg的粗木素产品。另外球磨碱预处理阶段产生的碱液可以并入制浆厂的碱回收,回收热源及碱,实现了全组分综合利用。  相似文献   

2.
以碱性过氧化氢(AHP)预处理的糠醛渣为原料进行酶解,有效地提高糖转化率。结果表明,在10%底物浓度下,24 h葡萄糖的 转化率达到了96.46%,比未预处理组提高了37.44%。 通过Mixture设计,确定了酶解的最优加酶量,即纤维素酶96%、半纤维素酶2%、 果胶酶2%。 对AHP预处理过的糠醛渣进行水洗能有效去除酶活抑制物,较未水洗组,24 h葡萄糖转化率提升了18.23%。 通过正交试验 优化糠醛渣同步糖化发酵(SSF)生成乙醇的条件为:反应温度38 ℃,pH 4.6,加酶量30 mg酶蛋白/g葡聚糖,酵母接种量10%。 在此最佳 条件下,糠醛渣同步糖化发酵96 h生成乙醇为理论转化率的88.64%。  相似文献   

3.
为了实现纤维素乙醇生产的"三高"(高浓度、高转化率和高发酵效率)指标,以复合预处理处理后的玉米秸秆为基质,探究其半同步糖化发酵工艺过程。通过对其高底物浓度预酶解过程特性考察,确定其最佳预酶解工艺为:在加酶量30 FPU/g干基质和50℃下,以15.6%(w/v)为起始基质浓度,在酶解12 h时补加相当于20%(w/v)初始基质浓度的干物料后继续酶解24 h。在最佳预酶解工艺基础上,探究了培养基成分和培养条件对乙醇发酵的影响,确定了发酵过程工艺:酵母提取物16 g/L、接种龄20 h、接种量0.6 g干菌体/L、发酵温度39℃和PEG4000 0.01 g/g干基质。在最佳的半同糖化发酵工艺下,发酵24 h后,乙醇产量达73.75 g/L,发酵效率为3.07 g/(L·h),转化率为61%。结果表明通过补料半同步糖化发酵过程可以实现高浓度和高发酵效率双重目标,这有利于推进纤维素乙醇生产的工业化发展。  相似文献   

4.
甘蔗渣是制糖工业的主要废弃物,因其来源广泛,纤维素含量高而成为一种重要的可再生生物资源。本文在对甘蔗渣成分分析的基础上,研究了温和碱法预处理甘蔗渣分步糖化乙醇发酵工艺。甘蔗渣经温和碱法预处理后采用分步糖化发酵来生产乙醇,正交设计试验表明影响甘蔗渣酶解的显著因素为酶添加量,并得到最优酶解条件:酶添加量为25 FPU/g甘蔗渣,温度为50℃,初始pH为4.9。在优化条件下,预处理甘蔗渣的酶解效率可达到74.26%。在甘蔗渣水解液中补加一定营养物后,适合酵母的生长和乙醇的发酵,发酵96 h时,乙醇产量达到39.79 g/L,发酵效率为82.70%,乙醇得率为0.48 g/g。本研究证实了温和碱法预处理甘蔗渣水解液发酵生产乙醇的可行性,为甘蔗渣预处理及用作乙醇发酵原料奠定了坚实的基础。  相似文献   

5.
杨晨 《中国油脂》2021,46(9):22-27
以南瓜籽蛋白为原料,通过球磨预处理辅助酶解法制备血管紧张素转换酶(ACE)抑制肽。以ACE抑制率和水解度为评价指标,对蛋白酶进行筛选。采用单因素试验研究球磨时间、酶解时间、底物质量浓度、pH和酶解温度对酶解产物ACE抑制率和水解度的影响,在此基础上,以ACE抑制率为考察指标,采用响应面法对球磨辅助酶解工艺条件进行优化。结果表明:球磨预处理可显著提高南瓜籽蛋白的酶解效率;最佳球磨辅助酶解工艺条件为选用碱性蛋白酶、球磨时间6 min、酶解时间10 h、底物质量浓度0.08 g/mL、pH 8.5、酶解温度55 ℃,在此条件下所得ACE抑制肽的ACE抑制率可达(86.65±0.55)%。  相似文献   

6.
牛堃  赵华  夏媛媛  董晓宇 《中国酿造》2012,31(4):102-105
该文以玉米秸秆为原料,经蒸汽爆破预处理后接入Trichoderma reesei Rut C-40培养纤维素酶曲,将纤维素酶曲与汽爆秸秆混合堆积糖化后,接入酵母菌进行同步糖化固态发酵生产乙醇,通过Box-Behnken设计实验得到最适酶解工艺条件:酶曲/汽爆秸秆为1.2,温度46℃,pH值4.4,堆积糖化48h后酶解率可达到32.50%。将酶解糖化48h后的底物接入酵母菌,发酵96h后乙醇产率可达0.15g/g底物,较直接同步糖化发酵乙醇产率提高了9.3%。  相似文献   

7.
本研究以玉米芯木糖渣(CCR)为原料,研究了LiBr辅助球磨预处理促进CCR酶解转化葡萄糖的效果。经单因素分析,LiBr辅助球磨预处理CCR较优的工艺条件为:球磨时间6.0 h、LiBr添加量50%和CCR固体含量80%;此预处理条件下的CCR无需水洗分离LiBr,在保留木质素的情况下实现了CCR的高效酶解;在纤维素酶用量为5 FPU/gCCR的情况下,酶解葡萄糖产率可高达95%。分析表征结果显示,LiBr辅助球磨预处理可高效破坏CCR中纤维素的结晶结构,降低了结晶度,使其具有无定形结构,提高了CCR的孔隙率,从而显著促进了CCR的酶水解。  相似文献   

8.
木质纤维素原料利用生物转化法生产燃料乙醇包括预处理、酶解、发酵和蒸馏等过程,其中预处理与酶解是影响纤维乙醇经济性的主要步骤,综述了纤维素乙醇的主要发酵方法及前期预处理产生的抑制物对发酵的影响,为开发经济性生产纤维乙醇工艺奠定基础。  相似文献   

9.
为实现玉米秸秆高效转化可发酵糖,提升玉米秸秆生产纤维素乙醇竞争力,对碱过氧化氢法预处理后高浓玉米秸秆半同步糖化发酵生产燃料乙醇的工艺进行了研究。建立底物浓度与酶解糖得率关系模型,以确定适宜的底物浓度。向预处理后的玉米秸秆中添加吐温20,考察其酶解过程特性,确定吐温20最适添加量。结果表明,酶解最适条件为:底物质量浓度200 g/L,吐温20添加量8%(ω)。在该条件基础上,对酵母种龄、吐温20对酵母发酵影响、半同步糖化发酵预酶解时间、半同步糖化发酵的时间、发酵温度进行了研究,确定了半同步糖化发酵的工艺条件为:种龄16 h,吐温20添加量5%(ω),预酶解时间9 h,半同步糖化发酵时间7 d,温度34℃。在最佳条件下,发酵7 d后,乙醇浓度达到23. 64 g/L,乙醇转化率达到76. 54%,较对照组(不添加吐温20)转化率提升3. 41%。该工艺条件下能实现高浓玉米秸秆高效转化可发酵糖及乙醇的目的。  相似文献   

10.
牡丹籽经酸热预处理后,采用乙醇辅助水酶法提取牡丹籽油,利用激光共聚焦显微镜分析经过预处理后的牡丹籽微观结构。通过优化得到水酶法提取牡丹籽油的条件为:原料细粉8次(粒径约为33.62μm),料液比17(g/mL),分别用中温α-淀粉酶(温度70℃,pH 5.5,时间1h,加酶量2mL/100g·原料)和葡糖淀粉酶(温度60℃,pH 4.5,时间1h,加酶量3mL/100g·原料)酶解,再于60℃、pH 9.0的条件下用体积分数35%的乙醇提取1h。该条件下牡丹籽清油得率为90.08%,水相含油量为6.60%,渣相含油量为2.78%,而且毛油的品质优良,经过简单精炼后的各项指标均达到一级成品牡丹籽油的粮食行业标准。  相似文献   

11.
利用SSF制取纤维乙醇的工艺研究   总被引:2,自引:0,他引:2  
王栋  常春  王林风  闫德冉 《酿酒》2010,37(1):77-79
利用同步糖化发酵(SSF)技术,以汽爆玉米秸秆为主要原料,对纤维乙醇的发酵工艺进行研究。玉米秸秆经蒸汽爆破预处理后,酶解得率增大到85.0%。进一步利用Box-Behnken实验设计方法,选取酶用量、发酵温度和发酵时间为影响乙醇产率的主要因素,通过响应面分析得到了较优的工艺条件:底物浓度15%(w/v),酶用量35FPU/g(底物),发酵温度37℃,发酵时间90h。在优化的工艺条件下,乙醇浓度为42.2g/L,达到理论产量的82.6%。和分步糖化发酵(SHF)工艺结果比较,SSF具有更高的生产效率。  相似文献   

12.
乙醇及发酵废液预处理秸秆条件的研究   总被引:1,自引:0,他引:1  
利用酒精厂的乙醇发酵废液对小麦秸秆进行预处理,处理液仍在本厂回收后再利用,这样有助于降低预处理成本,促进纤维素乙醇的发展。经实验,处理小麦秸秆的最佳条件为乙醇、杂醇油体积比为1∶1,处理温度110℃,处理时间为200min,处理后的秸秆酶解率达到83.3%,比直接酶解高出近50%,但由于纤维糖化液中抑制发酵成分的存在,使得发酵的酒精度只有6%左右。  相似文献   

13.
以玉米秸秆为原料,分别探讨了酶解糖化发酵乙醇和生物糖化发酵乙醇的效果。结果表明:纤维素酶糖化玉米秸秆发酵乙醇的最佳工艺条件为:纤维素酶量1 400 U/g DS,时间60 h,酵母接种量13%,发酵温度35℃。在此条件下,乙醇产率为0.144 g/g。黑曲霉糖化玉米秸秆发酵乙醇的最佳工艺条件:黑曲霉接种量13%,时间60 h,酵母接种量13%,温度35℃。在此条件下,乙醇产率为0.149 g/g。并对两种糖化发酵乙醇的方法进行了比较。  相似文献   

14.
为降低构树叶中单宁含量,采用蒸汽爆破、球磨等方式对构树叶进行预处理,以抗营养因子单宁含量为考察指标,通过响应面分析法确定枯草芽孢杆菌、乳酸菌和酿酒酵母菌的复合菌固态发酵构树叶制备蛋白饲料的最佳工艺。结果表明:最佳工艺条件为汽爆压强1.4 MPa,维压时间90 s;球磨时间20 min;发酵时间4 d,含水量60%,发酵温度32.50 ℃,酿酒酵母菌:乳酸菌:枯草芽孢杆菌=1:1:1。构树叶经发酵、汽爆后发酵和球磨发酵后发酵单宁含量分别降低了36.2%、39.5%和60.5%;粗蛋白含量分别增加了23.59%、10.28%和7.84%;粗灰分含量分别增加了16.7%、31.80%和24.23%;粗纤维含量分别降低了15.33%、12.32%和7.85%。构树叶的钙含量为2.70%,经发酵后钙含量无明显变化,经汽爆发酵后和球磨发酵后分别增加了23.33%和22.22%(P<0.05),预处理和发酵对磷和粗脂肪的含量几乎无影响,磷含量约为0.3%,粗脂肪含量约为2.4%。原料发酵、汽爆发酵和球磨发酵的酶活力分别高达41.43、44.77和65.10 U。球磨发酵降单宁效果要远远优于汽爆发酵和原料发酵,原料发酵的蛋白增加效果最佳。  相似文献   

15.
以碳酸钠预处理的稻草为唯一碳源,硫酸铵为氮源,采用烟曲霉(Aspergillus fumigatus)对稻草进行酶解,嗜鞣管囊酵母(Saccharomyces tannophilus)对酶解产物进行发酵生产乙醇,并对酶解及乙醇生产工艺进行研究。结果表明,烟曲霉及嗜鞣管囊酵母发酵碳酸钠预处理稻草生产乙醇的工艺为10 g稻草经90 mL 0.15 mol/L碳酸钠预处理后,调节pH值为4.5,按4%(V/V)的接种量接入烟曲霉种子液,于37 ℃、150 r/min条件下酶解12 h后,按2%(V/V)的接种量接入嗜鞣管囊酵母种子液,于37 ℃、150 r/min条件下发酵16 h,生物乙醇产量达到最高为(26.30±0.86) g/L。  相似文献   

16.
麦秆首先进行盐酸预处理,然后以盐酸预处理麦秆为底物通过正交实验优化了底物半同步和同步糖化发酵制乙醇条件。利用XRD对原料、酸预处理麦秆和发酵麦秆的结构特征进行分析。结果表明:盐酸预处理的麦秆半同步糖化发酵制乙醇的最佳条件为发酵温度36℃、酵母接种量0.1%、酶质量浓度0.8 g/L和发酵时间2 d,此时乙醇含量为19.16 g/L;盐酸预处理的麦秆同步糖化发酵制乙醇的最佳条件为发酵温度39℃、酵母接种量0.1%、酶质量浓度0.5 g/L和发酵时间4 d,此时乙醇含量为19.44 g/L;同步糖化发酵优于半同步糖化发酵;XRD分析表明酸预处理和发酵后,麦秆的结晶度降低。  相似文献   

17.
《食品与发酵工业》2014,(11):143-147
考察了农林废弃物橡子壳作为原料发酵制备乙醇的可行性。研究了稀碱法预处理在不同条件下(温度、时间、浓度)对酶水解的影响。结果发现以2%Na OH,121℃(0.15 MPa)处理60 min的条件下预处理效果较好,木素去除率达到39.34%,经酶水解,单糖得率(葡萄糖、木糖、阿拉伯糖)达到606.36 mg/g(预处理原料)。经过嗜单宁管囊酵母发酵60 h,乙醇浓度达到11.96 g/L,为理论产率的85.4%。  相似文献   

18.
《食品与发酵工业》2014,(11):109-115
以玉米秸秆为原料,经酸碱蒸煮处理后,再经纤维素复合酶酶解,利用酶解液发酵产γ-聚谷氨酸(γ-PGA)。通过单因素和正交试验,研究了用1.0%H2SO4、10.0%NH3OH、水三种预处理方法处理玉米秸秆,以含糖量为指标考察各因素对酶解效果的影响。结果表明,3种预处理方法酶解玉米秸秆的最佳条件基本一致:加酶量为35FPIU/g,底物浓度1∶15,酶解时间96 h。玉米秸秆酶解液与玉米糖化液混合发酵生产γ-PGA的最佳配比为7∶3,与玉米秸秆酶解液单独发酵相比,混合发酵产γ-PGA产量提高了95.12%。  相似文献   

19.
为提高南疆红枣利用率,课题以南疆骏枣为原料,采用原料酶解预处理技术,并结合半固态发酵工艺,研究并建立了红枣白兰地的最佳生产工艺。试验结果表明原料处理最佳酶解条件为:在果胶酶和纤维素酶混合质量比为1∶3,添加量为0.75 g/kg,在pH为3.5,50℃条件下酶解3 h,红枣可溶性固形物含量最高;红枣白兰地最优生产工艺为发酵过程中接种SY型葡萄酒酵母0.3 g/kg,红枣料水质量比为1∶7,发酵温度为24℃,发酵时间为15 d,蒸馏出的白兰地产品酒精度为45%vol,所得产品具有枣香浓郁、口感醇厚,色泽清亮,风味独特等特点。  相似文献   

20.
为确定氢氧化钠预处理甘蔗渣的最佳酶解条件,该研究选择经2% NaOH于121 ℃下处理1 h后的甘蔗渣为酶解对象,以预处理甘蔗渣的总可发酵糖得率为评价指标,采用单因素试验和响应面法优化酶解条件,建立了总可发酵糖得率与纤维素酶量、酶解时间和酶解转速之间的数学模型。结果表明,对结果影响的3个因素主次顺序为酶解时间>纤维素酶添加量>酶解转速,其中纤维素酶添加量分别与酶解时间和酶解转速存在显著的交互作用(P<0.05)。最佳酶解条件为纤维素酶添加量31 FPU/g底物,酶解时间96 h,酶解转速180 r/min。此优化条件下,甘蔗渣总可发酵糖得率为55.37%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号