首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Europium-doped YVO4 phosphors have been synthesized using microwave radiation of 700 W power. The uniformity and high rate of microwave heating, as well as “nonthermal” effects of microwave radiation, considerably accelerate the decomposition of precursors and YVO4:Eu3+ synthesis. The europium concentration was varied from 1 to 8 at %. The luminescence intensity of YVO4:Eu3+ was shown to depend on Eu3+ concentration, with a maximum at 8 at % Eu3+. According to transmission electron microscopy data, the synthesized phosphors consist of nanoparticles 6 to 8 nm in size, with an appreciable degree of agglomeration.  相似文献   

2.
The polycrystalline Eu2+ and RE3+ co-doped strontium aluminates SrAl2O4:Eu2+, RE3+ were prepared by solid state reactions. The UV-excited photoluminescence, persistent luminescence and thermo-luminescence of the SrAl2O4:Eu2+, RE3+ phosphors with different composition and doping ions were studied and compared. The results showed that the doped Eu2+ ion in SrAl2O4:Eu2+, Dy3+ phosphors works as not only the UV-excited luminescent center but also the persistent luminescent center. The doped Dy3+ ion can hardly yield any luminescence under UV-excitation, but can form a electron trap with appropriate depth and greatly enhance the persistent luminescence and thermo-luminescence of SrAl2O4:Eu2+. Different co-doping RE3+ ions showed different effects on persistent luminescence. Only the RE3+ ion (e.g. Dy3+, Nd3+), which has a suitable optical electro-negativity, can form the appropriate electron trap and greatly improve the persistent luminescence of SrAl2O4:Eu2+. Based on above observations, a persistent luminescence mechanism, electron transfer model, was proposed and illustrated.  相似文献   

3.
Homogeneous and size-controlled YVO4:Eu3+ micro/nanosheets were successfully synthesized on a large scale by using an ammonium oxalate (AO)-assisted hydrothermal route and post-calcination process. In this study, the shape and size of the as-prepared architectures can be changed effectively by controlling a series of experimental parameters, such as the precursor’s reaction temperature, hydrothermal reaction time and molar ratio of organic additive AO:Y3+. YVO4:Eu3+ micro/nanosheets were synthesized with lengths ranging from 2000 to 400 nm and thicknesses ranging from 200 to 50 nm. When changing the precursor’s reaction temperature and reducing the hydrothermal reaction time to 2 h, the phase composition was transformed into Y2O3 instead of YVO4. Functioning as a precipitant and shape modifier, AO exerted a dynamic effect by adjusting the growth rate of different facets under the various experimental conditions, resulting in the formation of different shapes and sizes of the final products. The correlative growth mechanism was analyzed in detail. Photoluminescence and Electroluminescence properties of the products exhibited a strong red emission focused on 618 nm under 275 nm ultraviolet excitation or direct current high-voltage field. Small sample sizes exhibited high EL intensity. The size-controlled products synthesized successfully via the hydrothermal method could provide a great opportunity for systematically evaluating their luminescence properties and accelerating the use of different types of applications in color display devices.  相似文献   

4.
This article reports the luminescence properties of amphipathic YVO4:Er3+/Yb3+ nanoparticles (average grain size ca. 20 nm) obtained by an oleate-aided hydrothermal process. Depending on the upconversion (UPC) and downconversion (DWC) processes, they show luminescence in the visible and near-infrared (NIR) regions, respectively, by 980-nm excitation. The sample doped with Er3+:2.5 mol% and Yb3+:10 mol% showed the highest luminescence intensity in both the visible and NIR regions as a result of efficient energy transfer from Yb3+ to Er3+ ions. The hydrothermal treatment greatly enhanced both the DWC and UPC luminescence efficiencies. This is due to the reduction in the concentration of surface defects and ligands, accompanied by grain growth. NIR Fluorescence microscopy revealed for the first time that DWC luminescence is sufficiently intense for application of these nanocrystals as a NIR bioprobe.  相似文献   

5.
Eu2+ and Tb3+ doped Ca2MgSi2O7 phosphors were synthesized by conventional solid-state reaction. The phase formation was confirmed by X-ray powder diffraction technique and refined lattice parameters were calculated by rietveld refinement process using Celref v3. The photoluminescence (PL) excitation and emission spectra were investigated. The phosphors exhibited broaden green emitting luminescence peaking at 520 nm when excited at 374 nm source. Morphological studies were carried out using Scanning electron microscopy (SEM) images of the sample with optimum PL emission. The dependence of photoluminescence intensity on co-dopant concentration and the kinetic parameters were also reported. Time resolved fluorescence spectroscopy (TRFS) is used to investigate the decay in luminescence signals with respect to time. The sample proved to be a good long lasting material, which makes it useful in emergency signs, textile printing, textile exit sign boards and electronic instrument dial pads etc.  相似文献   

6.
A series of Sr3La(PO4)3:Eu2+/Mn2+ phosphors were synthesized by a solid state reaction. The phase and the optical properties of the synthesized phosphors were investigated. The XRD results indicate that the doped Eu2+ and Mn2+ ions do not change the phase of Sr3La(PO4)3. The peak wavelengths of Eu2+ single doped and Eu2+/Mn2+ codoped Sr3La(PO4)3 phosphors shift to longer wavelength due to the larger crystal field splitting for Eu2+ and Mn2+. The increases of crystal field splitting for Eu2+ and Mn2+ are induced by the substitution of Sr2+ by Eu2+ and Mn2+ in Sr3La(PO4)3 host. Due to energy transfer from Eu2+ to Mn2+ in Sr3La(PO4)3:Eu2+/Mn2+ phosphors, tunable luminescence was obtained by changing the concentration of Mn2+. And the white light was emitted by Sr3La(PO4)3:3.0 mol%Eu2+/4.0 mol%Mn2+ and Sr3La(PO4)3:3.0 mol%Eu2+/5.0 mol%Mn2+ phosphors.  相似文献   

7.
Y2O3:Eu3+ phosphors were prepared by hydrothermal method. Effect of the doping concentration of Eu3+ on the photoluminescence properties of Y2O3:Eu3+ phosphor was studied in details. It was found that the strongest emission intensity is achieved as atomic ratio of Y3+ to Eu3+ is 8. As concentration of Eu3+ exceeds the critical concentration, the emission intensity decreases dramatically due to the concentration quenching of Eu3+. Also, the effect of Li+ on the photoluminescence performance of the Y2O3:Eu3+ phosphor is studied in this work. According to the results, the doping of Li+ may greatly improve the PL performance of the Y2O3:Eu3+ phosphors due to the flux effect and improved crystallinity caused by the doping of Li+.  相似文献   

8.
The SrLa2?xO4:xEu3+ phosphors are synthesized through high-temperature solid-state reaction method at 1473 K with various doping concentration. Their phase structures, absorption spectra, and luminescence properties are investigated by X-ray diffraction (XRD), UV–Vis spectrophotometer and photoluminescence spectrometry. The intense absorption of SrLa2?xO4:xEu3+ phosphors have occurred around 400 nm. The prominent luminescence spectra of the prepared phosphors exhibited bright red emission at 626 nm. The doping concentration 0.12 mol% of Eu3+ is shown to be optimal for prominent red emission and chromaticity coordinates are x?=?0.692, y?=?0.3072. Considering the high colour purity and appropriate emission intensity of Eu3+ doped SrLa2O4 can be used as red phosphors for white light emitting diodes (WLEDs).  相似文献   

9.
Ba2LaV3O11:Eu3+ phosphors were firstly synthesized by the traditional solid-state reaction method at 1100 °C. Their luminescence properties were investigated by photoluminescence excitation and emission spectra. The excitation spectrum shows a broad band centered at about 275 nm in the region from 200 to 370 nm, which is attributed to an overlap of the charge transfer transitions of O2??→?V5+ and O2??→?Eu3+. The phosphors exhibit the red emissions of Eu3+ and the emission intensity ratio of 5D0?→?7F2 to 5D0?→?7F1 is dependent on the Eu3+ concentration due to an environment change about Eu3+ ions. Concentration quenching occurs at 30 mol% in the phosphors and exchange interaction is its main mechanism. Ba2LaV3O11:Eu3+ displays tunable CIE color coordinates from yellow orange to red depended on Eu3+ content, which may have a potential application for illuminating and display devices.  相似文献   

10.
We investigated scintillation and dosimeter properties of 6LiF/CaF2 eutectic composites doped with different concentrations of Eu (0.005, 0.02, 0.1, 0.3, and 1.0). In the photoluminescence (PL) and scintillation spectra, an emission peak at 430 nm due to the 5d–4f transitions of Eu2+ was observed. The intensity of PL and scintillation for 6LiF/CaF2:0.005%Eu was the highest among the samples tested. In thermally stimulated luminescence (TSL), several glow peaks of 6LiF/CaF2:0.005%Eu were observed after X-ray irradiation of 1000 mGy. The TSL response exhibited a linear response against X-ray dose over a dose range of 1–10,000 mGy. In optically stimulated luminescence (OSL), an emission peak was observed at 430 nm during a stimulation by 630 nm light after X-ray irradiation of 1000 mGy. The OSL intensity was the highest for 6LiF/CaF2:0.005%Eu among all the samples investigated.  相似文献   

11.
The influence of activation of the Y2O3 matrix of the Y2O3:Eu3+ phosphor by Bi3+ ions on the luminescence of Eu3+ and Bi3+ ions in it and on conditions of the excitation energy transfer to luminescence centers is studied. It is shown that the presence of Bi3+ ions leads to the appearance of recombination luminescence with participation of bismuth ions at low concentrations (up to 6–8 at %) of the dominant activator europium and to an increase in the threshold of intrinsic concentration quenching of its luminescence.  相似文献   

12.
Homogeneous Y2O3:Eu3+ nanorods with the lengths of several micrometres were successfully synthesised on a large scale by using a urea-assisted hydrothermal method and a post-calcining process. In this study, the influences of urea content and NaOH concentration on the oriented growth, photoluminescence (PL) and electroluminescence (EL) intensity enhancement of Y2O3:Eu3+ were investigated. As a precipitant for isotropic growth, urea can counteract the effect of NaOH on oriented growth along the c-axis during hydrothermal treatment. The Y2O3:Eu3+ powders exhibited a strong red emission centred at 613 nm under either 245 nm UV excitation or the direct current high electric field. The PL intensity of the Y2O3:Eu3+ phosphor prepared with 0.3 g of urea reached 141 % that of the sample prepared under the same conditions but without urea. The strategy for controlling the oriented growth, PL and EL enhancement of Y2O3:Eu3+ can be extended to the synthesis of other inorganic nano/micromaterials.  相似文献   

13.
BaAl2O4:Eu2+,RE3+ (RE3+=Y, Pr) down conversion nanophosphors were prepared at 600 °C by a rapid gel combustion technique in presence of air using boron as flux and urea as a fuel. A comparative study of the prepared materials was carried out with and without the addition of boric acid. The boric acid was playing the important role of flux and reducer simultaneously. The peaks available in the XPS spectra of BaAl2O4:Eu2+ at 1126.5 and 1154.8 eV was ascribed to Eu2+(3d 5/2) and Eu2+(3d 3/2) respectively which confirmed the presence of Eu2+ ion in the prepared lattice. Morphology of phosphors was characterized by tunneling electron microscopy. XRD patterns revealed a dominant phase characteristics of hexagonal BaAl2O4 compound and the presence of dopants having unrecognizable effects on basic crystal structure of BaAl2O4. The addition of boric acid showed a remarkable change in luminescence properties and crystal size of nanophosphors. The emission spectra of phosphors had a broad band with maximum at 490–495 nm due to electron transition from 4f 65d 1 → 4f 7 of Eu2+ ion. The codoping of the rare earth (RE3+=Y, Pr) ions help in the enhancement of their luminescent properties. The prepared phosphors had brilliant optoelectronic properties that can be properly used for solid state display device applications.  相似文献   

14.
Different crystalline Ca3(VO4)2 nanocrystals have been synthesized successfully via a facile low temperature method with lithium addition. After different ration of Li+ doping into the Ca3(VO4)2: Eu3+ host, the crystallinity of the sample becomes different, resulting in different of luminescence intensity of the characteristic emission of Eu3+ ions. This approach provides economically viable route for large-scale synthesis of this kind of nanomaterials.  相似文献   

15.
BaI2:Eu2+,Eu3+ powders have been prepared by heat-treating BaCO3:Eu3+ precursor powders of various morphologies in an iodinating agent atmosphere and their structural properties, morphology, optical absorption, and luminescence have been studied. The results demonstrate that the powders thus prepared consist of a mixture of crystalline hydrates of various compositions, dominated by BaI2 ? 2Н2О (sp. gr. C2/c), and that the Eu2+: Eu3+ ratio in the powders is determined by the morphology of the precursor.  相似文献   

16.
NaLa(WO4)2:Eu3+ phosphors with different Eu3+ concentrations have been synthesized by a hydrothermal method. The phase is confirmed by XRD analysis, which shows a pure-phase NaLa(WO4)2 XRD pattern for all of NaLa(WO4)2:Eu3+ phosphors. The SEM and TEM images indicate that all of NaLa(WO4)2:Eu3+ phosphors have a octahedral morphology. These suggest that the Eu3+ doping has no influence on the structure and growth of NaLa(WO4)4 particles. By monitoring the emission of Eu3+ at 615 nm, NaLa(WO4)2:Eu3+ phosphors show excitation bands originating from both host and Eu3+ ions. Under the excitation at 271 nm corresponding to WO4 2? groups, emission bands coming from the 1A1 → 3T1 transition with the WO4 2? groups and the 5D0 → 7Fj (j = 0, 1, 2, 3 and 4) transitions of Eu3+ are observed. The emission intensity relating to WO4 2? groups decreases with increasing Eu3+ concentration. But emission intensities of Eu3+ increase firstly and then decreases because of concentration quenching effect. Under the excitation at 395 nm corresponding to 7F0 → 5L6 transition of Eu3+, only characteristic Eu3+ emission bands can be observed. The results of this work suggest that tunable luminescence can be obtained for Eu3+ doped NaLa(WO4)2 phosphors by changing Eu3+ concentration and excitation wavelength.  相似文献   

17.
The photoluminescence (PL) spectra and Eu2+ excited state lifetime of EuGa2S4 and EuGa2S4:Er3+ have been studied in the range 78–500 K. The spectra show a band at 545 nm, due to the 4f 65d → 4f 7(8 S 7/2) transition. With increasing temperature, the full width at half maximum Γ(T) of the PL band of EuGa2S4 and EuGa2S4:Er3+ crystals increases from 0.15 to 0.22 and from 0.13 to 0.19 eV, respectively. Over the entire temperature range studied, Γ(T) is a linear function of T 1/2. The 545-nm emission intensity and Eu2+ excited state lifetime in EuGa2S4 and EuGa2S4:Er3+ vary exponentially with temperature. The luminescence quenching energies evaluated from the Arrhenius plots of I(103/T) and τ(103/T) coincide (0.10 eV) within the error of determination.  相似文献   

18.
Al18B4O33:Eu3+, Tb3+ whiskers have been successfully prepared by a simple gel nano-coating method using aluminum isopropoxide as the starting materials. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), photoluminescence (PL), and thermogravimetric analysis (TGA) were used characterize the samples. The results show coexistence of the crystal phase Al18B4O33, amorphous phase, and Eu3+, Tb3+ ions of the samples with initial addition Al/B ratios from 3 to 1 are incorporated into the amorphous phase. The Al18B4O33:Eu3+, Tb3+ whiskers are very straight with an average diameter of 600 nm and lengths ranging from 5 to 10 μm. Under ultraviolet excitation at 365 nm, samples show mainly exhibit the characteristic emission of Eu3+ corresponding to \( ^{ 5} {\text{D}}_{ 0} \to {\text{F}}_{ 1 , 2} \) transitions due to an efficient energy transfer occurs from Tb3+ to Eu3+.  相似文献   

19.
Compound CaAl4O7 (CA4), SrAl4O7 (SA4), CaAl12O19 (CA12) and SrAl12O19 (SA12) have been synthesized by using single step combustion method. The phosphors have been characterized by XRD, SEM and PL techniques. Both CA4 and SA4 possess monoclinic crystal structure whereas CA12 and SA12 possess hexagonal structure. Effects of crystal symmetry on the emission spectrum have been studied by doping the samples with Ce3+ and Eu2+ ions. The luminescence properties of Ce3+ and Eu2+ in these hosts is discussed on the basis of their covalent character and the crystal field splitting of the d-orbital of dopant ions. The spectroscopic properties, crystal field splitting, centroid shift, red shift and stokes shift have been studied. Spectroscopic properties of Eu2+ ions have been accurately predicted from those of Ce3+ ions in the same host. Most importantly experimental results were matched excellently with the calculated results. The preferential substitution of Ce3+ and Eu2+ at different Ca2+, Sr2+ crystallographic sites have been discussed. The dependence of emission wavelengths of Ce3+ and Eu2+ on the local symmetry of different crystallographic sites was also studied by using Van Uitert’s empirical relation. Differences in the emission spectrum of these samples have been observed despite their similar crystal structures and space group. Possible reasons have been discussed.  相似文献   

20.
The alkaline orthosilicates of M2SiO4 (M = Ba, Mg, Sr) activated with Dy3+ and co-doped with Ho3+ are prepared through conventional solid-state method, i.e., mixing and grinding of solid form precursors followed by high-temperature heat treatments of several hours in furnaces, generally under open atmosphere and investigated by X-ray diffraction (XRD) to get phase properties and photoluminescence (PL) analysis to get luminescence properties. The thermal behaviours of well-mixed samples were determined by differential thermal analysis (DTA)/thermogravimetry (TG). The PL spectra show that the 478 and 572 nm maximum emission bands are attributed, respectively, to 4F9/26H15/2 and 4F9/26H13/2 transitions of Dy3+ ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号