首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Recently, the areas of planning and scheduling in artificial intelligence (AI) have witnessed a big push toward their integration in order to solve complex problems. These problems require both reasoning on which actions are to be performed as well as their precedence constraints (planning) and the reasoning with respect to temporal constraints (e.g., duration, precedence, and deadline); those actions should satisfy the resources they use (scheduling). This paper describes IPSS (integrated planning and scheduling system), a domain independent solver that integrates an AI planner that synthesizes courses of actions with constraint-based techniques that reason based upon time and resources. IPSS is able to manage not only simple precedence constraints, but also more complex temporal requirements (as the Allen primitives) and multicapacity resource usage/consumption. The solver is evaluated against a set of problems characterized by the use of multiple agents (or multiple resources) that have to perform tasks with some temporal restrictions in the order of the tasks or some constraints in the availability of the resources. Experiments show how the integrated reasoning approach improves plan parallelism and gains better makespans than some state-of-the-art planners where multiple agents are represented as additional fluents in the problem operators. It also shows that IPSS is suitable for solving real domains (i.e., workflow problems) because it is able to impose temporal windows on the goals or set a maximum makespan, features that most of the planners do not yet incorporate  相似文献   

3.
Sampling-Based Roadmap of Trees for Parallel Motion Planning   总被引:1,自引:0,他引:1  
This paper shows how to effectively combine a sampling-based method primarily designed for multiple-query motion planning [probabilistic roadmap method (PRM)] with sampling-based tree methods primarily designed for single-query motion planning (expansive space trees, rapidly exploring random trees, and others) in a novel planning framework that can be efficiently parallelized. Our planner not only achieves a smooth spectrum between multiple-query and single-query planning, but it combines advantages of both. We present experiments which show that our planner is capable of solving problems that cannot be addressed efficiently with PRM or single-query planners. A key advantage of our planner is that it is significantly more decoupled than PRM and sampling-based tree planners. Exploiting this property, we designed and implemented a parallel version of our planner. Our experiments show that our planner distributes well and can easily solve high-dimensional problems that exhaust resources available to single machines and cannot be addressed with existing planners.  相似文献   

4.
In this paper, we present a novel and domain-independent planner aimed at working in highly dynamic environments with time constraints. The planner follows the anytime principles: a first solution can be quickly computed and the quality of the final plan is improved as long as time is available. This way, the planner can provide either fast reactions or very good quality plans depending on the demands of the environment. As an on-line planner, it also offers important advantages: our planner allows the plan to start its execution before it is totally generated, unexpected events are efficiently tackled during execution, and sensing actions allow the acquisition of required information in partially observable domains. The planning algorithm is based on problem decomposition and relaxation techniques. The traditional relaxed planning graph has been adapted to this on-line framework by considering information about sensing actions and action costs. Results also show that our planner is competitive with other top-performing classical planners.  相似文献   

5.
A key feature of modern optimal planners such as graphplan and blackbox is their ability to prune large parts of the search space. Previous Partial Order Causal Link (POCL) planners provide an alternative branching scheme but lacking comparable pruning mechanisms do not perform as well. In this paper, a domain-independent formulation of temporal planning based on Constraint Programming is introduced that successfully combines a POCL branching scheme with powerful and sound pruning rules. The key novelty in the formulation is the ability to reason about supports, precedences, and causal links involving actions that are not in the plan. Experiments over a wide range of benchmarks show that the resulting optimal temporal planner is much faster than current ones and is competitive with the best parallel planners in the special case in which actions have all the same duration.1  相似文献   

6.
Temporal planning is a research discipline that addresses the problem of generating a totally or a partially ordered sequence of actions that transform the environment from some initial state to a desired goal state, while taking into account time constraints and actions' duration. For its ability to describe and address temporal constraints, temporal planning is of critical importance for a wide range of real‐world applications. Predicting the performance of temporal planners can lead to significant improvements in the area, as planners can then be combined in order to boost the performance on a given set of problem instances. This paper investigates the predictability of the state‐of‐the‐art temporal planners by introducing a new set of temporal‐specific features and exploiting them for generating classification and regression empirical performance models (EPMs) of considered planners. EPMs are also tested with regard to their ability to select the most promising planner for efficiently solving a given temporal planning problem. Our extensive empirical analysis indicates that the introduced set of features allows to generate EPMs that can effectively perform algorithm selection, and the use of EPMs is therefore a promising direction for improving the state of the art of temporal planning, hence fostering the use of planning in real‐world applications.  相似文献   

7.
8.
9.
Planning research is recently concerned with the resolution of more realistic problems as evidenced in the many works and new extensions to the Planning Domain Definition Language (PDDL) to better approximate real problems. Researchers’ works to push planning algorithms and capture more complex domains share an essential ingredient, namely the incorporation of new types of constraints. Adding constraints seems to be the way of approximating real problems: these constraints represent the duration of tasks, temporal and resource constraints, deadlines, soft constraints, etc., i.e. features that have been traditionally associated to the area of scheduling. This desired expressiveness can be achieved by augmenting the planning reasoning capabilities, at the cost of slightly deviating the planning process from its traditional implicit purpose, that is finding the causal structure of the plan. However, the resolution of complex domains with a great variety of different constraints may involve as much planning effort as scheduling effort (and perhaps the latter being more prominent in many problems). For this reason, in this paper we present a general approach to model those problems under a constraint programming formulation which allows us to represent and handle a wide range of constraints. Our work is based on the original model of , an optimal temporal planner, and it extends the ’s formulation to deal with more expressive constraints. We will show that our general formulation can be used for planning and/or scheduling, from scheduling a given complete plan to generating the whole plan from scratch. However, our contribution is not a new planner but a constraint programming formulation for representing highly-constrained planning + scheduling problems.  相似文献   

10.
In this paper, we address the problem of specifying and computing preferred plans using rich, qualitative, user preferences. We propose a logical language for specifying preferences over the evolution of states and actions associated with a plan. We provide a semantics for our first-order preference language in the situation calculus, and prove that progression of our preference formulae preserves this semantics. This leads to the development of PPlan, a bounded best-first search planner that computes preferred plans. Our preference language is amenable to integration with many existing planners, and beyond planning, can be used to support a diversity of dynamical reasoning tasks that employ preferences.  相似文献   

11.
There is an increasing interest in solving temporal planning problems. Identification and propagation of mutual exclusion relations between actions can significantly enhance the efficiency of a planner. Current definitions of mutually exclusive actions severely restrict their concurrency. In this paper, we report on thirteen groups of permanently mutually exclusive PDDL 2.1, Level 3 actions. We report on sixteen types of potentially-conflicting interactions between two actions where concurrency may be maximized by adjusting starting time of one of the two actions. We discuss several examples where actions can overlap despite conflicting preconditions and/or effects. The processes executing these actions are mostly independent. We report on a new domain-rewriting technique called “baiting” in order to improve the concurrency in temporal plans. Baiting actions lure a temporal planner into improving concurrency. The technique involves splitting user-identified operators. We report on three types of baiting (standard, double and nested) and show their suitability for various types of action interactions. Baiting requires minimal modification to the planning code. Baiting does not increase the branching in search trees. Baiting does not affect the soundness and completeness of a temporal planner. Our empirical evaluation shows that the makespans of plans generated by efficient planner Sapa with baited domain are significantly lower than makespans of plans generated without baiting.  相似文献   

12.
We present an any-time concurrent probabilistic temporal planner (CPTP) that includes continuous and discrete uncertainties and metric functions. Rather than relying on dynamic programming our approach builds on methods from stochastic local policy search. That is, we optimise a parameterised policy using gradient ascent. The flexibility of this policy-gradient approach, combined with its low memory use, the use of function approximation methods and factorisation of the policy, allow us to tackle complex domains. This factored policy gradient (FPG) planner can optimise steps to goal, the probability of success, or attempt a combination of both. We compare the FPG planner to other planners on CPTP domains, and on simpler but better studied non-concurrent non-temporal probabilistic planning (PP) domains. We present FPG-ipc, the PP version of the planner which has been successful in the probabilistic track of the fifth international planning competition.  相似文献   

13.
14.
Some of the current best conformant probabilistic planners focus on finding a fixed length plan with maximal probability. While these approaches can find optimal solutions, they often do not scale for large problems or plan lengths. As has been shown in classical planning, heuristic search outperforms bounded length search (especially when an appropriate plan length is not given a priori). The problem with applying heuristic search in probabilistic planning is that effective heuristics are as yet lacking.In this work, we apply heuristic search to conformant probabilistic planning by adapting planning graph heuristics developed for non-deterministic planning. We evaluate a straight-forward application of these planning graph techniques, which amounts to exactly computing a distribution over many relaxed planning graphs (one planning graph for each joint outcome of uncertain actions at each time step). Computing this distribution is costly, so we apply Sequential Monte Carlo (SMC) to approximate it. One important issue that we explore in this work is how to automatically determine the number of samples required for effective heuristic computation. We empirically demonstrate on several domains how our efficient, but sometimes suboptimal, approach enables our planner to solve much larger problems than an existing optimal bounded length probabilistic planner and still find reasonable quality solutions.  相似文献   

15.
经过近十多年的努力,现代智能规划器无论是效率还是处理能力均得到了极大提高。鉴于现有规划理论的局限性,进一步提高现有规划技术效率已愈显困难。现有的大多数规划器均不具备学习能力,无法从先前求解经验中学习有用知识。综述了基于学习的规划技术的发展现状,然后重点介绍了规划大赛中最佳学习器所使用的学习技术,最后指出当前基于学习的规划技术研究领域中存在的主要问题。  相似文献   

16.
17.
In the last fifteen years, sampling-based planners like the Probabilistic Roadmap Method (prm) have proved to be successful in solving complex motion planning problems. While theoretically, the complexity of the motion planning problem is exponential in the number of degrees of freedom, sampling-based planners can successfully handle this curse of dimensionality in practice. We give a reachability-based analysis for these planners which leads to a better understanding of the success of the approach. This analysis compares the techniques based on coverage and connectivity of the free configuration space. The experiments show, contrary to general belief, that the main challenge is not getting the free space covered but getting the nodes connected, especially when the problems get more complicated, e.g. when a narrow passage is present. By using this knowledge, we can tackle the narrow passage problem by incorporating a refined neighbor selection strategy, a hybrid sampling strategy, and a more powerful local planner, leading to a considerable speed-up.  相似文献   

18.
Search space explosion is a critical problem in robot task planning. This problem limits current robot task planners to solve only simple block world problems and task planning in a real robot working environment to be impractical. This problem is mainly due to the lack of utilization of domain information in task planning. In this paper, we describe a fast task planner for indoor robot applications that effectively uses domain information to speed up the planning process. In this planner, domain information is explicitly represented in an object-oriented data model (OODM) that uses many-sorted logic (MSL) representation. The OODM is convenient for the management of complex data and many-sorted logic is effective for pruning in the rule search process. An inference engine is designed to take advantage of the salient features of these two techniques for fast task planning. A simulation example and complexity analysis are given to demonstrate the advantage of the proposed task planner.  相似文献   

19.
In contingent planning problems, agents have partial information about their state and use sensing actions to learn the value of some variables. When sensing and actuation are separated, plans for such problems can often be viewed as a tree of sensing actions, separated by conformant plans consisting of non-sensing actions that enable the execution of the next sensing action. We propose a heuristic, online method for contingent planning which focuses on identifying the next useful sensing action. We select the next sensing action based on a landmark heuristic, adapted from classical planning. We discuss landmarks for plan trees, providing several alternative definitions and discussing their merits. The key part of our planner is the novel landmarks-based heuristic, together with a projection method that uses classical planning to solve the intermediate conformant planning problems. The resulting heuristic contingent planner solves many more problems than state-of-the-art, translation-based online contingent planners, and in most cases, much faster, up to 3 times faster on simple problems, and 200 times faster on non-simple domains.  相似文献   

20.
In this paper we describe a language for reasoning about actions that can be used for modelling and for programming rational agents. We propose a modal approach for reasoning about dynamic domains in a logic programming setting. Agent behavior is specified by means of complex actions which are defined using modal inclusion axioms. The language is able to handle knowledge producing actions as well as actions which remove information. The problem of reasoning about complex actions with incomplete knowledge is tackled and the temporal projection and planning problems is addressed; more specifically, a goal directed proof procedure is defined, which allows agents to reason about complex actions and to generate conditional plans. We give a non-monotonic solution for the frame problem by making use of persistency assumptions in the context of an abductive characterization. The language has been used for implementing an adaptive web-based system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号