首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new prediction model using apparent activation energy is proposed to estimate the variation of compressive strength of fly ash concrete with aging. After analyzing the experimental result with the model, fly ash replacement content and water-binder ratio influence on apparent activation energy was investigated.According to the analysis, the model provides a good estimation of compressive strength development of fly ash concrete with aging. As the fly ash replacement content increases, limiting relative compressive strength and initial apparent activation energy increase. Concrete with water-binder ratio smaller than 0.40 gives nearly constant limiting relative compressive strength and initial apparent activation energy when analyzed with various water-binder ratios. However, concrete with water-binder ratio larger than 0.40 increases limiting relative compressive strength and initial apparent activation energy.  相似文献   

2.
Ultrasound is used to evaluate the compressive strength of concrete with mineral admixtures. In addition, the relationship between ultrasound velocity and compressive strength of concrete are evaluated. High-volume fly ash (FA), blast furnace slag (BFS) and FA+BFS are used as the mineral admixtures in replacement of Portland cement (PC).

Compressive strength and ultrasonic pulse velocity (UPV) were determined at the 3-, 7-, 28- and 120-day curing period. Both compressive strength and UPV were very low for all the levels of mineral admixtures at an early age of curing, especially for samples containing FA. However, with the increase of curing period, both compressive strength and UPV of all the samples increased. The relationship between UPV and compressive strength was exponential for FA, BFS and FA+BFS. However, constants were different for each mineral admixture and each level replacement of PC.  相似文献   


3.
Ash content for optimum strength of foamed concrete   总被引:6,自引:0,他引:6  
A study has been undertaken into the properties of foamed concrete in which large volumes of cement (up to 75 wt.%) have been replaced with both classified and unclassified fly ash. This fourth paper in the series examines the effects of increasing the levels of ash on the compressive strength of the concrete. Twenty-seven different mixtures were cast with varying ash contents and densities, and the results used to develop models that have been used to predict the compressive strength of the foamed concrete. The output from the models predicts an optimum ash content for maximum strength at a given porosity and age and shows that the optimum value increases with increasing age.  相似文献   

4.
This paper presents a laboratory study on the strength development of concrete containing fly ash and optimum use of fly ash in concrete. Fly ash was added according to the partial replacement method in mixtures. A total of 28 mixtures with different mix designs were prepared. 4 of them were prepared as control mixtures with 250, 300, 350, and 400 kg/m3 cement content in order to calculate the Bolomey and Feret coefficients (KB, KF). Four groups of mixtures were prepared, each group containing six mix designs and using the cement content of one of the control mixture as the base for the mix design. In each group 20% of the cement content of the control mixture was removed, resulting in starting mixtures with 200, 240, 280, and 320 kg/m3 cement content. Fly ash in the amount of approximately 15%, 25%, 33%, 42%, 50%, and 58% of the rest of the cement content was added as partial cement replacement. All specimens were moist cured for 28 and 180 days before compressive strength testing. The efficiency and the maximum content of fly ash that gives the maximum compressive strength were obtained by using Bolomey and Feret strength equations. Hence, the maximum amount of usable fly ash amount with the optimum efficiency was determined.This study showed that strength increases with increasing amount of fly ash up to an optimum value, beyond which strength starts to decrease with further addition of fly ash. The optimum value of fly ash for the four test groups is about 40% of cement. Fly ash/cement ratio is an important factor determining the efficiency of fly ash.  相似文献   

5.
The effect of porosity on the strength of foamed concrete   总被引:6,自引:0,他引:6  
A study has been undertaken to investigate the effects of replacing large volumes of cement on the properties of foamed concrete (up to 75% by weight) with both classified and unclassified fly ash. This is the third paper in a series; it investigates the relationship between porosity and compressive strength and presents mathematical models that have been developed to describe this relationship. The compressive strength of the foamed concrete was shown to be a function of porosity and age, and a multiplicative model (such as the equation derived by Balshin) was found to best fit the results at all ages up to 1 year. In addition, it was concluded that the equation derived by Hoff could effectively be used to predict the compressive strength of foamed concrete mixtures containing high percentages of ash.  相似文献   

6.
7.
The paper reports the influence of the composition of Portland cement-pulverised fuel ash-metakaolin (PC-PFA-MK) binders on sorptivity and strength development of PC-PFA-MK concrete cured both in air and in water and on carbonation depth, and relates this to measured changes in sorptivity of the concrete. Concrete mixtures covering four different total cement replacement levels (10%, 20%, 30% and 40%) for PC-PFA-MK concrete with various MK/PFA proportions, water and air cured for up to 18 months, were investigated. The change in compressive strength and sorptivity with age at all cement replacement levels under both water and air curing are compared with those of the control PC concrete. The results presented in this paper form part of an investigation into the optimisation of a ternary blended cementitious system based on ordinary PC, PFA and MK for the development of high-performance concrete.  相似文献   

8.
The paper reports the influence of the composition of Portland cement (PC)-pulverised fuel ash (PFA)-metakaolin (MK) binders on chloride ingress and strength retardation of PC-PFA-MK concrete exposed to synthetic seawater. PC-PFA-MK concrete covering four different total cement replacement levels (10%, 20%, 30% and 40%) and with various MK:PFA proportions was exposed to synthetic seawater for up to 1.5 years. The chloride concentration-penetration depth profiles and change in compressive strength of the concrete for a range of binder compositions and at various exposure times are compared with those of the control PC concrete. It is established that blending the binders in PC concrete and PC-PFA concrete with MK produces concrete with a reduced strength deterioration factor (SDF) and good resistance to chloride penetration when exposed to seawater. The results presented in this paper form part of an investigation into the performance of concrete incorporating both PFA and MK in the binder to produce high performance concrete.  相似文献   

9.
In this article, on the basis of the existing experimental data, an empirical equation for calculating the compressive strength of Portland cement concrete is developed. The determination of the compressive strengths by the equation described here relies on accurate determination of the water to cement ratio which gives maximum compressive strength and the analysis of its variation with the curing time. The results obtained for the plain (without admixture) and latex modified concretes at the age of 28 days show that this ratio ranges from 0.18 to 0.23. These values are reasonably close to the non-evaporable water content reported for the Portland cement. On the other hand, this range as determined by the above procedure limits the usefulness of the proposed equation for predicting the compressive strength of silica fume blended Portland cement concretes. However, a general method of solving problems of this type allows the determination of upper and lower bounds of this range. This method requires the measurement of at least two compressive strengths corresponding to two different water to cement ratios.  相似文献   

10.
Microwave energy can accelerate the hydration of cement, resulting in rapid strength development of concrete in an early period. In this paper, prediction of later-age compressive strength of normal concrete, made with rapid-hardening and ordinary Portland cement, based on the accelerated strength of concrete cured with microwave energy was investigated. To accelerate curing properly, the optimal microwave curing process for concrete was first determined and then was applied to concrete. The possible early ages for the strength prediction were found to be at 3.5 and 5.5 h for concrete made with rapid-hardening and ordinary Portland cement, respectively. For each cement type, a formula for the strength prediction was derived from the relationship between accelerated early-age strength of concrete cured with microwave energy and later-age strength of normally cured concrete. Predictions of strength at 7 days for concrete made with rapid-hardening Portland cement and 28 days of concrete made with ordinary Portland cement were within 15% agreement with actual test results.  相似文献   

11.
Fly ash is commonly used as a substitute for cement within concrete in various applications. Manufacturers of reinforced concrete products commonly limit the quantity of fly ash used to 25% or less by weight. Test cylinders with varying percentages of Class C (25-65%) and Class F (25-75%) fly ash and a water-reducing admixture (WRA) were created under field manufacturing conditions and tested for 7-day compressive strength. Seven-day compressive strength for the concrete/fly ash/WRA was found to be highest when the concrete mix included approximately 35% Class C or 25% Class F fly ash. However, substitution ratios of up to 65% Class C or 40% Class F fly ash for cement met or exceeded American Society for Testing and Materials (ASTM) strength requirements for manufacture of Class I, II and III reinforced concrete pipe (RCP).  相似文献   

12.
Heat treatment is widely used to accelerate the strength-gaining rate of concrete. In general, the ultimate strengths of the heated-treated concrete are lower than those of the standard cured specimens. When ultrafine fly ash (UFA) is included in concrete, the pozzolanic reaction is accelerated through the heat treatment. Sometimes, various chemical activators were used to activate the reactivity of fly ash. In the current study, UFA and slag were used as a replacement for cement, steam curing and chemical activators were used to accelerate hydration of cement and fly ash, and then compared with moist curing. This paper presents the influence of steam curing on the compressive strength of concrete containing UFA with or without slag. The experimental results indicated that the concrete containing UFA has low early strength after 13-h steam curing and that the difference between the 28-day compressive strength of concrete through 13-h steam curing and that of moist-cured concrete is large, but the concrete with UFA and CaSO4 or Ca(OH)2 has a high early strength, thus, the reactivity of fly ash must be accelerated. Concrete containing UFA and ground slag was prepared, whose compressive strengths were improved.  相似文献   

13.
Equilibrium catalyst (Ecat), one of the spent fluid catalytic cracking (FCC) catalysts from oil companies, shows pozzolanic activity. In this study, the effects on the pozzolanic activity of calcination of Ecat and on the compressive strength of the resulting cementitious materials were examined. The pozzolanic activity of this mineral additive was indicated from DSC measurements. The results show that the pozzolanic activity of Ecat increases with calcined temperature initially, reaches a maximum, and then decreases afterwards. Ecat calcined at about 650 °C becomes the most active. Mortars with 10% calcined catalyst at 3-28 curing days exhibit strength 8-18% greater than that with the untreated. Concrete with a 10% calcined Ecat at 3-28 curing days exhibits strength 7-11% greater than that with the untreated. If the calcined catalyst is further ground, its pozzolanic activity is enhanced, and the compressive strength of the resulting mortars or concrete becomes higher.  相似文献   

14.
Mercury intrusion porosimetry study was carried out on ordinary Portland cement (OPC) pastes with 10% to 40% mineral additives, such as steel-making slag, granulated blast furnace slag and fly ash. For all samples, the porosity of paste and compressive strength of mortar based on this paste were determined at 3, 7, 28, 90 and 180 days. Relationship between the porosity and strength was investigated and some equations for the strength-porosity relationship were presented according to Balshin multiplicative model. Results show that mineral additives delayed process that micropore structure of OPC paste developed and strength development of sample with mineral additives was faster than that of OPC sample. Balshin equation fits the results of strength and porosity of all samples and there is a strongly quantitative relationship between strength and porosity. After being mixed with mineral additives, the intrinsic strength σ0 and power n both increased and the sequence of σ0 and n for different mineral additives was fly ash>steel-making slag>blast furnace slag.  相似文献   

15.
Effect of steam curing on class C high-volume fly ash concrete mixtures   总被引:2,自引:0,他引:2  
The effect of steam curing on concrete incorporating ASTM Class C fly ash (FA), which is widely available in Turkey, was investigated. Cement was replaced with up to 70% fly ash, and concrete mixtures with 360 kg/m3 cementitious content and a constant water/binder ratio of 0.4 were made. Compressive strength of concrete, volume stability of mortar bar specimens, and setting times of pastes were investigated. Test results indicate that, under standard curing conditions, only 1-day strength of fly ash concrete was low. At later ages, the strength values of even 50% and 60% fly ash concretes were satisfactory. Steam curing accelerated the 1-day strength but the long-term strength was greatly reduced. Setting time of fly ash-cement pastes and volume stability of mortars with 50% or less fly ash content were found to be satisfactory for standard specimens. In addition, for steam curing, this properties were acceptable for all replacement ratios.  相似文献   

16.
Prediction of splitting tensile strength of high-performance concrete   总被引:1,自引:0,他引:1  
Splitting tensile strength (STS) is one of the concrete mechanical properties that are used in structural design. It can be related to numerous parameters, which include compressive strength, water/binder (W/B) ratio and concrete age. Until now, most researchers estimated the STS directly from compressive strength data. This paper suggests formulae that relate STS with that of compressive strength, W/B ratio and concrete age. The predicted STS can be obtained accurately using these formulae. It is proposed that the equation with the concrete age (t) parameter be used in predicting the STS of high-performance concrete (HPC).  相似文献   

17.
This paper outlines the preliminary results of a research project aimed at optimizing the fly ash content in concrete. Such fly ash concrete would develop an adequate 1-day compressive strength and would be less expensive than the normal Portland cement concrete with similar 28-day compressive strength. The results show that, in a normal Portland cement concrete having a 28-day compressive strength of 40 MPa, it is possible to replace 50% of cement by a fine fly ash (∼3000 cm2/g) with a CaO content of ∼13%, yielding a concrete of similar 28-day compressive strength. This concrete can be designed to yield an early-age strength of 10 MPa and results in a cost reduction of about 20% in comparison to the control concrete. In a case of a coarser fly ash (∼2000 cm2/g) with a CaO content of ∼4%, substitution levels of cement by this ash could be from 30% to 40%. This concrete yields a 1-day compressive strength of 10 MPa and a 28-day compressive strength similar to that of the control concrete. The total cost of this concrete is about 10% lower than that of the control concrete.  相似文献   

18.
Thanongsak Nochaiya 《Fuel》2010,89(3):768-774
This paper reports the normal consistency, setting time, workability and compressive strength results of Portland cement-fly ash-silica fume systems. The results show that water requirement for normal consistency was found to increase with increasing SF content while a decrease in initial setting time was found. Workability, measured in term of slump, was found to decrease with silica fume content (compared to blends without silica fume). However, it must be noted that despite the reduction in the slump values, the workability of Portland cement-fly ash-silica fume concrete in most cases remained higher than that of the Portland cement control concrete. Furthermore, the utilization of silica fume with fly ash was found to increase the compressive strength of concrete at early ages (pre 28 days) up to 145% with the highest strength obtained when silica fume was used at 10 wt%. Moreover, scanning electron micrographs show that utilization of fly ash with silica fume resulted in a much denser microstructure, thereby leading to an increase in compressive strength.  相似文献   

19.
Cracking is a visible type of damage to concrete that has significant adverse effects on the mechanical and durability properties of concrete. An experimental study on the identification and quantification of cracking in postheated concrete was conducted to provide a better understanding of the mechanisms of damages to concrete after exposure to high temperatures. In addition to the quantification of the residual compressive and tensile strengths of concrete after high temperature exposure, both macroscale and microscopic cracks were observed and measured. The crack patterns in different concretes, including concrete made with different water to binder (w/b) ratios and PFA dosages, were classified. Also examined was the cracking in the corresponding hardened cement pastes (hcp's) prepared without adding aggregates. The relation of cracking with deterioration of the durability properties of concrete, with respect to the chloride diffusion test results, was discussed. Crack density, a quantitative term, which had been introduced to study the microcrack properties in concrete, was adopted for measuring the severity of cracking. Severe cracking of concrete was observed after exposure to 450 °C and higher temperatures. The presence of PFA reduced the extent of these thermal cracks.  相似文献   

20.
The use of bonded and unbonded caps in testing very high strength concrete cylinders has been investigated experimentally. A hundred and ninety-two concrete cylinder specimens of 150-mm diameter and 300-mm height were cast and tested using packing with softboard, neat cement paste, neoprene pad and sulfur mortar. The design strength level of 75-100 MPa was achieved using water-cementitious material ratios of 0.22, 0.26 and 0.31. The results of the study were compared considering compressive strength and static elastic moduli values. A two-way analysis of variance was performed at a .01 level of significance in order to compare the effect of end conditions. It was found that the overall mean compressive strengths of specimens capped with neat cement paste, neoprene pad sulfur mortar were not significantly different. The packed specimens exhibited a significant difference from the others. On the other hand, there was no statistical difference in the static elastic moduli values when different capping types were used. Several modulus prediction equations were also examined. Experimental values were consistently higher than the predicted values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号