首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Perovskite solid solution in the (1− x )[0.4BiScO3–0.6BaTiO3]+ x (K1/2Bi1/2)TiO3 [BSBT–KBT x ] system was synthesized using conventional sintering and hot-isostatic pressing. Dielectric properties of BSBT ceramics with different dopant levels of KBT were characterized as a function of temperature and frequency for potential use of high-temperature capacitors. The BSBT ceramics with KBT exhibited high dielectric permittivities (ɛr) (>1700 at RT) and low dielectric loss over the temperature range from 100° to 300°C, with flat temperature coefficients of permittivity (TCɛs). In addition, BSBT ceramics with increasing KBT were observed to possess dielectric relaxation characteristics at temperatures (>RT) as observed in lead-based relaxors. Furthermore, high energy densities, being on the order of 4.0 J/cm3 at 220 kV/cm was observed for the BSBT–KBT20 ceramics from the electric-field polarization behavior.  相似文献   

2.
The structural and dielectric properties of (1− x )BaTiO3– x BiScO3 ( x =0–0.5) ceramics were investigated to acquire a better understanding of the binary system, including determination of the symmetry of the phases, the associated dielectric properties, and the differences in the roles of Bi2O3 and BiScO3 substitutions in a BaTiO3 solid solution. The solubility limit for BiScO3 into the BaTiO3 perovskite structure was determined to be about x =0.4. A systematic structural change from the ferroelectric tetragonal phase to a pseudo-cubic one was observed at about x =0.05–0.075 at room temperature. Dielectric measurements revealed a gradual change from proper ferroelectric behavior in pure BaTiO3 to highly diffusive and dispersive relaxor-like characteristics from 10 to 40 mol% BiScO3. Several of the compositions showed high relative permittivities with low-temperature coefficients of capacitance over a wide range of temperature. Quantification of the relaxation behavior was obtained through the Vogel–Fulcher model, which yielded an activation energy of 0.2–0.3 eV. The attempt characteristic frequency was 1013 Hz and the freezing temperature, T f, ranged from −177° to −93°C as a function of composition. The high coercive fields, low remanent polarization, and high activation energies suggest that in the BiScO3–BaTiO3 solid solutions, the polarization in nanopolar regions is weakly coupled from region to region, limiting the ability to obtain long-range dipole ordering in these relaxors under field-cooled conditions.  相似文献   

3.
The influence of La2O3 doped on the microstructure and dielectric properties, including the phase structure, temperature dependence of permittivity, and the hysteresis loop of BaTiO3–Nb2O5–Fe2O3 (BTNF) materials has been investigated in X-ray diffraction, SEM, and LCR analyzer, respectively. Experiments revealed that incorporation of proper content of La2O3 basically soluted in the lattice of BaTiO3 and can control the grain-growth, reduce the dielectric loss of the BTNF materials. The development of microstructure promoted by the additives can result in the improvement of the dielectric constant. When the doping concentration of La2O3 was 3.846 wt%, the relative dielectric constant of the sample sintered at 1280°C only for 2 h could reach 4308, and improve the dielectric-temperature characteristics markedly. As a result, a novel Y5P can be achieved in the BTNF ceramics, which is very promising for practical use in Y5P multilayer ceramic capacitors.  相似文献   

4.
The effect of B2O3–SiO2 liquid-phase additives on the sintering, microstructure, and microwave dielectric properties of LiNb0.63Ti0.4625O3 ceramics was investigated. It was found that the sintering temperature could be lowered easily, and the densification and dielectric properties of LiNb0.63Ti0.4625O3 ceramics could be greatly improved by adding a small amount of B2O3–SiO2 solution additives. No secondary phase was observed for the ceramics with B2O3–SiO2 additives. With the addition of 0.10 wt% B2O3–SiO2, the ceramics sintered at 900°C showed favorable microwave dielectric properties with ɛr=71.7, Q × f =4950 GHz, and τf=−2.1 ppm/°C. The energy dispersive spectra analysis showed an excellent co-firing interfacial behavior between the LiNb0.63Ti0.4625O3 ceramic and the Ag electrode. It indicated that LiNb0.63Ti0.4625O3 ceramics with B2O3–SiO2 solution additives have a number of potential applications on passive integrated devices based on the low-temperature co-fired ceramics technology.  相似文献   

5.
X-ray diffractometry, scanning electron microscopy, transmission electron microscopy, and an impedance analyzer were used to examine the Nb–Co codoping effects on the densification, crystalline phase, microstructure development, and dielectric–temperature characteristics of BaTiO3–(Bi0.5Na0.5)TiO3 ceramics. The results indicate that the Curie temperature shifted to a higher temperature (above 140°C) by adding BNT. The dielectric constant–temperature (ɛ– T ) curve broadened at the Curie temperature due to the small grain size (0.3–0.4 μm). A core-shell structure was developed, which is helpful to flatten the ɛ– T curve of BaTiO3 ceramics at high temperatures.  相似文献   

6.
The effects of Dy doping and sintering parameters on the properties of BaTiO3 ceramics were studied. The average grain size decreases with increasing Dy content and is controlled at ∼1.5 μ m by 0.8 at.% Dy. The Curie temperature change, associated with ≤1.2 at.% Dy, is <3°C. The dielectric constant is ∼2600 for specimens doped with 0.8 at.% Dy, calcined at 1200°C, and sintered at 1450°C. The dielectric constant variation with ambient temperature is much less than that of conventional BaTiO3 ceramics. Lattice constant c decreases with increasing Dy concentration whereas a increases slightly. The effects of grain size on dielectric constant, lattice parameters, and linear thermal expansion coefficient are more pronounced than the chemical effects of Dy doping in the ferroelectric state, whereas in the paraelectric state, these characteristics are almost independent of grain size as well as Dy concentration. The decrease in the frequency of occurrence of 90° twins with decreasing grain size implies that internal stress, which develops when BaTiO3 ceramics are cooled below Tc , strongly influences the effects of grain size.  相似文献   

7.
Dense bodies were prepared of compositions in the quaternary system BaTiO3–BaSnO3–SrSnO3–CaSnO3 containing from 3 to 60 mole % stannate. The general effect of the stannate addition to barium titanate was to decrease the Curie temperature and broaden the peak. On a molar basis the three stannates were approximately equivalent in their effect on the dielectric properties of barium titanate, although the rate of shift of the Curie temperature was slightly greater when SrSnO3 was used. Bodies containing calcium or strontium stannate had lower power factors than those containing barium stannate. Bodies compounded with calcium stannate matured most readily and at lower temperatures. Bodies having dielectric constants ( K ) of 2300 to 2800 at 1 kc. with low positive temperature coefficients up to about 55°C. were obtained with a 3 mole % addition of stannate. Bodies with minimum K 's of 3000 to 4000 at 1 kc. over the range 25° to 85°C. were obtained from BaTiO3 with an addition of about 6 mole % BaSnO3, SrSnO3, or CaSnO3. Bodies with negative temperature coefficients of K ranging from about 13,000 to about 1000 p.p.m. per °C. were obtained with stannate additions of from 10 to 60 mole %.  相似文献   

8.
The effect of spark plasma sintering (SPS) on the densification behavior of Pb(Mg1/3Nb2/3)O3–PbTiO3 ceramics has been investigated. Specimens with a density of >99% of the theoretical density (TD) were obtained using SPS treatment at 900°C. Through normal sintering at 1200°C, however, the density of the specimen was only ∼92% of TD.  相似文献   

9.
A working subsolidus phase diagram for the system BaTiO3–Ba5Nb4O15 has been determined by firing sol–gel-synthesized samples over a range of temperatures. The main difference from previous diagrams is the greater extent of the Nb-doped BaTiO3 cubic solid solutions, BaTi1−5 x Nb4 x O3, at lower temperatures with x extending to 0.09 at 900°C, but only 0.05 at 1400°C. Electrical property measurements show that compositions with large x ( x ≥0.0025) are highly insulating for pellets sintered at 1300°C in air, followed by a slow cool. Compositions with low x , however, exhibit a residual semiconducting grain core and are not fully reoxidized readily. Composition dependence of the dielectric properties shows a continuous and smooth transition from classic ferroelectric behavior with pure BaTiO3 to normal dielectric response with a temperature-independent relative permittivity of approximately 22–24 for x >∼0.08. At intermediate compositions, ranges of both relaxor ferroelectric and quasi-ferroelectric behavior are observed. Possible reasons for an observed anomalous increase in value of the permittivity at the ferroelectric transition temperature at low x , which is superposed on an overall decrease in permittivity with increasing x , are discussed.  相似文献   

10.
To demonstrate that barium titanate-based ceramics could be sintered at a low temperature thus reducing the cost of capacitor production, systematic investigation has been made on the structure and dielectric properties of barium titanate-based X8R ceramics, doped with various Nd2O3 content and different ZnO–B2O3 solution as the sintering aids. The dielectric ceramic powder with good permittivity and low dielectric loss were obtained at a sintering temperature of 900°C, meeting X8R specifications. Transmission electron microscopy and EDS analysis shows a high concentration of Nd element in the boundary regions, which verifies the beneficial role of Nd in facilitating the formation of core-shell structure. The results also suggest that the developed BaTiO3-based ceramics may serve as a promising candidate for fabricating cheap multilayer capacitors with pure Ag as inner electrode.  相似文献   

11.
Dense, small-grained BaTiO3 ceramics, with a grain size around 1 μm and a relative sintered density >98%, were obtained at 1100°C from sol-gel-derived gel monoliths without using any sintering additives. The monolithic gels asprepared had a relative density of about 50% and consisted of ultrafine pseudo-cubic BaTiO3 particles (<50 nm). These gels, with a significantly high density compared with that of previous ones (∼30%), have been synthesized at room temperature from a sol solution with a concentration of equimolar mixture of titanium isopropoxide and barium ethoxide (0.8 mol/L), using the methanol/2-methoxyethanol mixed-solvent system. Microstructural development of the gel monoliths with increasing sintering temperature and the dielectric properties of the obtained dense BaTiO3 ceramic have been investigated.  相似文献   

12.
Lead-free potassium sodium niobate-based piezoelectric ceramics (1− x )(Na0.5K0.5)NbO3– x BiScO3 (KNN–BS) ( x =0∼0.05) have been prepared by an ordinary sintering process. Single perovskite phase of KNN–BS exhibits an orthorhombic symmetry at x <0.015 and pseudocubic symmetry at x >0.02, separating by a MPB at 0.015≤ x ≤0.02. Piezoelectric and ferroelectric properties are significantly enhanced in the MPB, which are as follows: piezoelectric constant d 33=203 pC/N, planar coupling coefficient k p=0.36, remnant polarization P r=24.4 μC/cm2. These solid solution ceramics look promising as a potential lead-free candidate materials.  相似文献   

13.
Mn-doped 0.98K0.5Na0.5NbO3–0.02BiScO3 (0.98KNN–0.02BS) lead-free piezoelectric ceramics have been prepared by a conventional sintering technique and the effects of Mn doping on the phase structure and piezoelectric properties of the ceramics have been studied. Our results reveal that a small amount of Mn can improve the densification of the ceramics effectively. Because of the high densification, fine grain, and Mn doping effects, the piezoelectric and dielectric properties of the ceramics are improved considerably. Very good piezoelectric and dielectric properties of d 33=288 pC/N, k p=0.46, ɛr=1591, and T C=328°C were obtained for the 0.98KNN–0.02BS ceramics doped with 0.8 mol% Mn. Therefore, the 0.98KNN–0.02BS ceramics containing a small amount of Mn are a good candidate material for lead-free piezoelectric ceramics.  相似文献   

14.
Multilayer capacitors with thin, dielectric BaTiO3 layers can possess a relatively high capacitance per unit volume. A solid metallic precursor method has recently been developed for preparing thin BaTiO3/noble metal laminates. In the present paper, the phase and microstructural evolution of Ba-Ti metallic precursors were examined after oxidation at 300° to 900°C in pure oxygen at 1 atm pressure. Barium peroxide, BaO2, formed rapidly during oxidation at 300°C, with titanium largely remaining as unoxidized particles in the peroxide matrix. Between 375° and 500°C, the solidstate reaction of barium peroxide with metallic titanium yielded barium orthotitanate, Ba2TiO4. Further exposure to temperatures between 500° and 900°C resulted in the oxidation of residual metallic titanium. The oxidized titanium then reacted with the orthotitanate matrix to form barium metatitanate, BaTiO3. The rate of formation of BaTiO3 was found to be strongly dependent on the degree of milling of the Ba-Ti precursors and on the heating rate between 300° and 500°C.  相似文献   

15.
Lead-free piezoelectric ceramics in the system 0.95Na0.5K0.5NbO3–0.05LiTaO3 were modified with ≤1 mol% MnO. Maximum densities occurred at a sintering temperature of 1050°C. Characteristic changes in the relative intensity of X-ray diffraction peaks were consistent with Mn ions substituting on the perovskite lattice to produce a change from orthorhombic to a mixture of tetragonal and orthorhombic phases. Grain growth during secondary recrystallization was also affected, leading to increased grain sizes. The dielectric constant increased from ∼600 in unmodified ceramics to ∼1040 in ceramics prepared with 0.5 mol% MnO.  相似文献   

16.
Fe3O4–BaTiO3 composite particles were successfully prepared by ultrasonic spray pyrolysis. A mixture of iron(III) nitrate, barium acetate and titanium tetrachloride aqueous solution were atomized into the mist, and the mist was dried and pyrolyzed in N2 (90%) and H2 (10%) atmosphere. Fe3O4–BaTiO3 composite particle was obtained between 900° and 950°C while the coexistence of FeO was detected at 1000°C. Transmission electron microscope observation revealed that the composite particle is consisted of nanocrystalline having primary particle size of 35 nm. Lattice parameter of the Fe3O4–BaTiO3 nanocomposite particle was 0.8404 nm that is larger than that of pure Fe3O4. Coercivity of the nanocomposite particle (390 Oe) was much larger than that of pure Fe3O4 (140 Oe). These results suggest that slight diffusion of Ba into Fe3O4 occurred.  相似文献   

17.
Phase equilibria in the binary system BaTiO3–SrTiO3 were studied above 1200°C. This system is characterized by a complete series of solid solutions with a minimum at 2.5 mole % SrTiO3 and 1585°C. The hexagonal BaTiO3 phase is suppressed to a region extending no farther than 0.5% SrTiO3 at 1600°C. No immiscibility gap was found.  相似文献   

18.
The microwave dielectric properties of dense ceramics of a new A4B3O12 type cation-deficient hexagonal perovskite Sr3LaNb3O12 are reported. Single-phase powders can be obtained from the mixed-oxide route at 1320°C and dense ceramics (>96% of the theoretical X-ray density) with uniform microstructures (5–12 um) can be obtained by sintering in air at 1430°C. The ceramic exhibits a moderate dielectric constant ɛr∼36, a high quality factor Q × f ∼45 327 GHz, and a low temperature coefficient of resonant frequency τ f of −9 ppm/°C.  相似文献   

19.
High dielectric constant and low loss ceramics with composition Ba2La3Ti3TaO15 have been prepared by a conventional solid-state ceramic route. This compound adopts A5B4O15 cation-deficient hexagonal perovskite structure. The dielectric properties of dense ceramics sintered in air at 1520°C have been characterized at microwave frequencies. It shows a relative dielectric constant of ∼45, quality factor Q u× f of ∼26 828 GHz and temperature variation of resonant frequency of −0.97 ppm/°C.  相似文献   

20.
Polycrystalline barium titanate fired in nitrogen at 1300° to 1400°C accommodates up to 3 mole % UO2 in solid solution; its structure is then cubic at room temperature. With BaUO3 additions the structure becomes disordered and quasi-cubic. In air, about 1 mole % UO2 goes into solid solution in BaTiO3 but the structure remains tetragonal. Diffraction peaks of a new phase, possibly a ternary oxide of barium, uranium, and titanium, appear in patterns of specimens containing more than 2 mole % UO2. The dielectric constant of BaTiO3 ceramics fired in air, steam, or oxygen increases with up to about 0.5 mole % UO2 but declines rapidly above this level. The dielectric constant of BaUO3 is about two orders of magnitude lower than that of BaTiO3, and additions of BaUO3 invariably lower the dielectric constant of BaTiO3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号