首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 结晶器内钢液凝固前沿温度梯度的降低可以阻碍柱状晶的生长、促进柱状晶向等轴晶的转变和提高等轴晶率,从而有利于铸坯组织的均质化。基于上述原理和结晶器传热计算,设计和制造了可用于降低钢液凝固前沿温度梯度的带隔热镀层的新型结晶器,并在方坯连铸机上进行了工业试验,分析了其对方坯凝固组织的影响。结果表明,低温度梯度结晶器可满足连铸生产要求;与传统结晶器相比,低温度梯度结晶器出口铸坯表面温度提高了108℃,相近拉速下该结晶器的平均热流密度相对更低,表明其减缓了钢液在凝固初期的传热,从而降低了凝固前沿的温度梯度;通过与低过热度、电磁搅拌技术相结合,低温度梯度结晶器生产的铸坯等轴晶率提高了8%~13%,中心偏析和缩孔严重程度明显降低。  相似文献   

2.
马幼平  鲁路  张远芬 《特殊钢》2003,24(4):42-44
通过方坯结晶器上端内嵌石墨套改变结晶器内凝固坯壳层界面前沿的温度梯度,研究了给定的浇注温度下嵌石墨套对连铸坯凝固组织变化的影响。嵌石墨套结晶器显著改变其凝固壳前端钢液的温度分布,有效地抑制铸坯柱状晶的生长,扩大等轴晶区,减轻凝固偏析。  相似文献   

3.
An embedded sensor, designed for rapid and accurate response times and using wireless data transmission, has been developed for the on-site measurement of temperatures in industrial continuous casting moulds. The sensor has been used to measure the temperature at several points in the mould during production in a Southwire copper casting process. The measured data has been used to calculate the temperature gradient in the mould to estimate the heat flux through it; this is then used as a boundary condition for numerical simulations of solidification. For these, we employ a method that tracks the solidification front explicitly; this has an advantage over fixed-grid methods in simulations for materials having a short solidification interval, since the release of latent heat at the solidification front can be resolved without resorting to a very fine mesh. The special considerations required for setting the initial condition for the numerical scheme and the time taken for the superheated melt to form a solid shell are also discussed.  相似文献   

4.
基于传热学基本原理、凝固理论和有限单元法,建立了凝固传热有限差分数学模型,对连铸凝固全过程进行模拟分析,结果表明,拉速越大,铸坯中心及表面温度越高,出结晶器坯壳厚度越薄;过热度增大,铸坯中心及表面温度均上升,出结晶器坯壳厚度减薄;冷却水量相对增大时,铸坯出结晶器坯壳厚度增大,二冷区温度下降较快。连铸坯凝固模型可用来确定常规拉速范围及不同拉速下的凝固壳厚度、凝固末端位置以及铸坯表面温度分布。  相似文献   

5.
The internal quality and yield in 4 ton steel ingot of 40cmd8 grade was studied by comparing its solidification in a square cross-section mould with a slender rectangular cross-section mould, using FEM simulation. The model predicted various solidification aspects like fluid flow, thermal and solidification profiles, mushy zone, local solidification time, porosity and piping for both the molds. The convective flow of the molten metal during solidification showed higher velocity in square ingot than rectangular ingot under similar conditions due to lower surface area to volume ratio that affected the heat transfer in the rectangular ingot. Higher amount of air gap between the ingot and the mould was formed in rectangular ingots. Lower microsegregation as measured in terms of local solidification time was observed in rectangular ingot. Based on microstructure parameters such as thermal gradient and rate of solidification, it was found that the square ingot had more equiaxed zone than rectangular ingot. The rectangular ingot solidified at a faster rate and showed more propensity for core porosity than the square ingot. The ingot yield was improved by 3.6% through mould shape modification from square to rectangular. Model was validated to limited extent by carrying out a typical experiment with square mould.  相似文献   

6.
《钢铁冶炼》2013,40(7):512-524
Abstract

Solidification in a small experimental steel ingot casting was studied using finite element based simulation. Using the model, the phenomenon associated with fluid flow, temperature distribution, mushy zone formation, thermal gradient ahead of solidification front, local solidification time at various instances of solidification was examined. The heat transfer was found significant till a critical thickness of the solidified ingot. Air gap analysis during the solidification showed that, in spite of high ferrostatic pressure of liquid metal there is notable air gap in the ingot bottom. The model predicted the final piping shrinkage and some small zones of axial porosity formation. The experimental ingot showed a good match on piping shrinkage and porosity obtained from simulation. The microstructure formation in the experimental ingot could be correlated with simulation results. The approximate regime of columnar to equiaxed transition was estimated form the simulation and was matched with that obtained in the actual experimental ingot. The microstructures of the ingot at typical zones were examined in the ingot and correlated to local solidification time.  相似文献   

7.
常锷  王立江 《钢铁》2012,47(8):27-30
 铁素体不锈钢凝固过程中形成的柱状晶会影响钢的成形性,减少甚至避免铸坯柱状晶的形成,促进等轴晶的形成,对铁素体不锈钢来说尤为重要。采用连铸和模铸的试验方法浇铸了铁素体不锈钢430,以分析影响其凝固结构的因素。结果表明,电磁搅拌对430不锈钢连铸坯等轴晶的形成作用显著。无论模铸试验还是连铸试验,冷却强度对430铸坯柱状晶的形成都有明显的影响。在模铸试验条件下,碳、氮含量越高,越有利于其凝固时等轴晶的形成;在连铸试验条件下,由于温度梯度大,碳、氮含量对凝固组织的影响被削弱,但如果对钢液进行搅拌,碳、氮含量的变化对凝固组织仍然有明显的影响。  相似文献   

8.
为控制油井管用连铸圆坯的质量,基于薄片移动法建立了连铸圆坯凝固传热数学模型,并应用Procast软件的CA—FE模块对37Mn5钢Ф150mm圆坯凝固组织进行了模拟。中心等轴晶率模拟结果与工业试验检测结果相一致,据此,建立了柱状晶-等轴晶转变判据。基于此判据的中心等轴晶率预测结果表明,降低过热度、提高拉速和降低二冷零段...  相似文献   

9.
采用ANSYS软件建立了圆坯连铸过程的二维凝固传热模型,通过射钉实验以及表面温度的测定对模型进行了实验验证.结果表明模型能较准确地得到任意位置处铸坯坯壳厚度以及预测凝固终点位置.在传热模型的基础上结合铸坯低倍观察着重分析了圆坯坯壳生长规律.发现圆坯凝固过程中柱状晶区坯壳的厚度与凝固时间的平方根呈线性关系,符合平方根定律,并对平方根定律进行了修正,修正项与过热度和凝固速率有关;铸坯中心等轴区坯壳厚度与凝固时间平方根为非线性关系,凝固坯壳的生长不再符合平方根定律;间接证明了圆坯柱状晶生长是单方向传热,等轴晶生长时传热方向不唯一.   相似文献   

10.
提出了方坯高效连铸结晶器有效结构形式,并通过ansys有限元软件,建立高效连铸结晶器与传统结晶器铜管的传热模型,并对其凝固传热以及温度场进行计算对比,重点讨论不同结构形式的结晶器在传热效率及传热均匀性方面的差异,并讨论其对高拉速下坯壳凝固的影响。结果表明,高效结晶器可以使得结晶器的传热效率提高7.8%,并且使得结晶器铜管热面最高温度降低100℃,热面温差降低到5℃以下。作者根据该理论,通过有限元优化设计,设计制造出方坯高效连铸结晶器,并应用于某钢厂155mm方断面的铸机上,稳定生产拉速达到4m/min,最大拉速达到4.46m/min。  相似文献   

11.
《钢铁冶炼》2013,40(3):206-215
Abstract

At the thin slab caster of Tata Steel, IJmuiden, mild cooling mould powders were introduced with the aim to control the mould heat transfer during casting. These mild cooling mould powders are characterised by specific values of basicity, solidification point and chemical composition. Application of these mould powders resulted in a redistribution of mould heat transfer during casting, i.e. a reduced and more stable mould heat transfer in the critical upper part of the mould and an increased mould heat transfer in the lower part of the mould. The average mould heat transfer and hence the shell thickness at mould exit are comparable to the standard powder. The application of mild cooling mould powders also resulted in improved solidification behaviour of the steel shell. A thinner chill zone with smaller thickness variations was observed. Furthermore, it was found that the mould taper required optimisation to match the changes in shrinkage behaviour to ensure uniform solidification. The use of mild cooling powders was observed to give an increase in mould friction. Mould thermal monitoring indicated that the solid slag films fractured (sheeting) in the upper part of the mould. However, no operational problems were reported, which indicate that the first 200 mm under the steel meniscus is essential for initial solidification and for the formation of a homogeneous steel shell. All these findings can be understood by considering the crystallisation properties of the mould slag, which include the cooling rate. Mild cooling has been shown to provide uniform heat transfer and adequate lubrication for high speed thin slab casting.  相似文献   

12.
A quenching technique was applied to study the formation of the central equiaxed zone in ingots. Two alloy systems were studied, lead with 2 pct Sb and aluminum with 2 pct Cu. It was found that the central zone can be regarded as composed of two zones, one formed from the bottom by sedimentation and the other formed by the adhesion and further growth of crystals at the vertical solidification front. The columnar-to-equiaxed transition at the vertical solidification front is caused by the development of individual equiaxed grains and not by the remaining melt becoming more and more mushy. It is suggested that the branched columnar zone often observed in commercial ingots is identical to the equiaxed zone formed at the vertical solidification front.  相似文献   

13.
14.
The columnar-to-equiaxed transition (CET) was studied in lead-tin alloys, which were solidified directionally from a chill face. The main parameters analyzed include the temperature gradients, solidification velocities of the liquidus and solidus fronts, and grain size. The transition was observed to occur when the temperature gradient in the melt decreased to values between −0.8 °C/cm and 1 °C/cm. In addition, there is an increase in the velocity of the liquidus front faster than the solidus front, which increases the size of the mushy zone. The size of the equiaxed grains increases with distance from the transition, an observation that was independent of alloy composition. The comparison with available analytical models and the observations indicate that the transition is the result of a competition between coarse columnar dendrites and finer equiaxed dendrites.  相似文献   

15.
The formation and propagation of the popular off-corner subsurface cracks in bloom continuous casting were investigated through thermo-mechanical analysis using three coupled thermo-mechanical models.A two-dimensional thermo-elasto-visco-plastic finite element model was developed to predict the mould gap evolution,temperature profiles and deformation behavior of the solidified shell in the mould region.Then,a three-dimensional model was adopted to calculate the shell growth,temperature history and the development of stresses and strains of the shell in the following secondary cooling zones.Finally,another three-dimensional model was used to analyze the stress distributions in the straightening region.The results showed that the off-corner cracks in the shell originated from the mould owing to the tensile strain developed in the crack sensitive regions of the solidification front,and they could be driven deeper by the possible severe surface temperature rebound and the extensive tensile stress in the secondary cooling zone,especially upon the straightening operation of the bloom casting.It is revealed that more homogenous shell temperature and thickness can be obtained through optimization of mould corner radius,casting speed and secondary cooling scheme,which help to decrease stress and strain concentration and therefore prevent the initiation of the cracks.  相似文献   

16.
基于构形理论,以板坯热损失率、表面温度梯度、矫直点表面温度、表面极限温度和液芯长度组成的惩罚函数为优化目标,在二冷总供水流量一定的条件下对板坯连铸凝固传热过程进行优化,得到二冷区各区段最佳水量分配比,分析水量分配比、二冷总供水流量和拉坯速度对复合函数(板坯热损失率和表面温度梯度的线性加权函数)、热损失率目标、表面温度梯度目标和板坯表面温度的影响。结果表明:与初始水量分配比结果相比,水量分配比优化后的复合函数、热损失率目标和表面温度梯度目标分别降低35.04%,2.14%和59.48%;优化后的二冷区出口温度和空冷区末端温度分别提高6.79%和1.59%。最佳水量分配比方案在提高板坯蓄能的同时也提高了板坯的质量。  相似文献   

17.
为了研究铝合金定向凝固组织的变化规律,采用有限元软件ProCAST对Al Si Cu合金定向凝固过程进行模拟,分析了不同浇注温度和抽拉速率对铸件定向凝固过程中的温度梯度、固液界面前沿、糊状区宽度、枝晶生长速率和二次枝晶臂间距的影响。结果表明,当浇注温度越高时,温度梯度越大,而固液界面前沿下凹越小,糊状区宽度也越窄,从而越有利于顺序凝固的发生;随着抽拉速率的增大,枝晶生长速率先增大后减小,当抽拉速率为200 μm/s时,最大生长速度达到0.093 mm/s,铸件凝固组织最佳;当抽拉速率大于300或小于200 μm/s时,都会导致枝晶生长速率缓慢,枝晶生长不平稳,二次枝晶臂粗大。对模拟得到较优的工艺参数进行试验验证,可以制备出具有较好力学性能的铸件。  相似文献   

18.
《钢铁冶炼》2013,40(7):546-551
Abstract

A mathematical model based on an inverse heat transfer calculation was built to determine the heat flux between the mould and slab based on the measured mould temperatures. With K? turbulence model, a mathematical model of three-dimensional heat transfer and solidification of molten steel in continuous slab casting mould is developed. Solidification has been taken into consideration, and flow in the mushy zone is modelled according to Darcy’s law as is the case of flow in the porous media. The heat flux prescribed on the boundaries is obtained in the inverse heat conduction calculation; thus, the effect of heat transfer in the mould has been taken into consideration. Results show that the calculated values of mould temperature coincide with the measured ones. Results also reveal that the temperature distribution and shell thickness are affected by the fluid flow and heat transfer of slab which is governed by the heat flux on the mould/slab interface.  相似文献   

19.
Avoiding particle entrapment into the solidifying shell of a steel continuous caster is important to improve the quality of the continuous cast product. Therefore, the fluid flow dynamics in the steel melt and mushy zone, heat transfer and solidification of the steel shell, as well as the motion and entrapment of inclusion particles during the casting process were investigated using computational models. Solidification of the strand shell is modelled with an enthalpy‐formulation by assuming a columnar morphology in the mushy zone. The motion of particles is tracked with a Lagrangian approach. When the particles reach the solidification front, they can be entrapped/engulfed into the solid shell or pushed away from the solidification front, depending on the mushy zone morphology and the forces acting on them. The current paper focuses on the mould region at a steel continuous caster, including the submerged entry nozzle (SEN) and 1.2 m length of the strand. The results are validated with plant measurements and demonstrate the potential of the model to predict fluid flow, shell growth and the positions and the amount of entrapped/engulfed particles in the solidifying strand.  相似文献   

20.
《钢铁冶炼》2013,40(5):374-378
Abstract

An experimental study with respect to the influence of electric current pulse (ECP) on the solidification structure of molten silicon steel was investigated with a copper mould designed to simulate the twin roll casting process. The experimental results showed that the application of ECP can increase the proportion of equiaxed grains up to 67·5%. The mechanism of exerting ECP is also discussed. It can be confirmed that the application of ECP on twin roll casting could effectively improve the solidification structure of silicon steel strip.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号