首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Next-generation micro-solid oxide fuel cells for portable devices require nanocrystalline thin-film electrolytes in order to allow fuel cell fabrication on chips at a low operation temperature and with high power outputs. In this study, nanocrystalline gadolinia-doped ceria (Ce0.8Gd0.2O1.9− x ) thin-film electrolytes are fabricated and their electrical conductivity and thermodynamic stability are evaluated with respect to microstructure. Nanocrystalline gadolinia-doped ceria thin-film material (Ce0.8Gd0.2O1.9− x ) exhibits a larger amount of defects due to strain in the film than state-of-the-art microcrystalline bulk material. This strain in the film decreases the ionic conductivity of this ionic O2− conductor. The thermodynamic stability of a nanocrystalline ceria solid solution with 65 nm grain size is reduced compared with microcrystalline material with 3–5 μm grain size. Nanocrystalline spray-pyrolyzed and PLD Ce0.8Gd0.2O1.9− x thin films with average grain sizes larger than 70 nm show predominantly ionic conductivity for temperatures lower than 700°C, which is high enough to be potentially used as electrolytes in low to intermediate-temperature micro-solid oxide fuel cells.  相似文献   

2.
The phase relations involving the 24 K n -type Nd2- x Ce x CuO4 superconductor were investigated at 1000°C in air. The terminal solid solubility was confirmed to be x = 0.2. This solid solution is the only ternary phase in the Nd2O3–CeO2–CuO diagram. A binary (1 − y )CeO2– y NdO1.5 solid solution exists out to y = 0.4. Phase diagrams for NdO1.5–CeO2–CuO (1000°C) and NdO1.5–CeO2 (900° to 1500°C) are presented.  相似文献   

3.
La0.8Sr0.2Ga0.8Mg0.115Co0.085O3−δ (LSGMC) powders were prepared by polymeric precursor synthesis, using either polyvinyl alcohol (PVA) or citric acid (CA) as complexing agents. The powders were synthesized using different ratios between the complexing agent and the cations dissolved in solution. The obtained polymer gel precursors were dried and calcined at temperatures between 1000° and 1450°C. Single-phase LSGMC powders were obtained at a firing temperature of 1450°C, using PVA and a molar ratio between the hydroxylic groups and the total cations of 3:1. Phase-pure LSGMC powders were used to sinter (1490°C, 2 h) thick pellets. The functional properties of LSGMC pellets were assessed by electrochemical impedance spectroscopy. The electrical conductivity values and the apparent activation energies in different transport regimes were in agreement with literature data. The same LSGMC powders were deposited by electrophoretic deposition (EPD) on a green membrane containing lanthanum-doped ceria (La0.4Ce0.6O2− x , LDC), a binder, and carbon powders. The LSGMC/LDC bi-layer obtained by EPD was cofired at 1490°C for 2 h. A dense and crack-free 8-μm-thick LSGMC film supported on a porous skeleton of LDC was obtained. The combined use of proper powder synthesis and film processing routes has thus proven to be a viable way for manufacturing anode-supported LSGMC films.  相似文献   

4.
(La0.8Sr0.2)0.98Fe0.98Cu0.02O3−δ can be sintered directly onto YSZ (without the need for a protective ceria interlayer). Though subject to an extended "burn-in" period (∼200 h), anode-supported YSZ cells using the Cu-doped LSF achieve power densities ranging from 1.3 to 1.7 W/cm2 at 750°C and 0.7 V. These cells have also demonstrated 500 h of stable performance. The results are somewhat surprising given that XRD indicates an interaction between (La0.8Sr0.2)0.98Fe0.98-Cu0.02O3−δ and YSZ resulting in the formation of strontium zirconate and/or monoclinic zirconia. The amount and type of reaction product was found to be dependent on cathode and electrolyte powder precalcination temperatures.  相似文献   

5.
A series of oxide ion conductors Ce6− x Gd x MoO15−δ (0.0≤ x ≤1.8) have been prepared by the sol–gel method. Their properties were characterized by differential thermal analysis/thermogravimetry (DTA/TG), X-ray diffraction (XRD), Raman, IR, X-ray photoelectron spectroscopy (XPS), and AC impedance spectroscopy. The XRD patterns showed that the materials were single phase with a cubic fluorite structure. The conductivity of Ce6− x Gd x MoO15−δ increases as x increases and reaches the maximum at x =0.15. The conductivity of Ce4.5Gd1.5MoO15−δ is σt=3.6 × 10−3 S/cm at 700°C, which is higher than that of Ce4.5/6Gd1.5/6O2−δt=2.6 × 10−3 S/cm), and the corresponding activation energy of Ce4.5Gd1.5MoO15−δ (0.92 eV) is lower than that of Ce4.5/6Gd1.5/6O2−δ (1.18 eV).  相似文献   

6.
Ceramics of the melilite-type compound La1+ x Sr1− x Ga3O7−δ were prepared by conventional ceramic processing. Samples prepared represented the entire homogeneity region of the phase (i.e., x =−0.15 to 0.60). Electrochemical characterization under variable temperature and atmospheric conditions in the vicinity of air entailed four-point direct-current conductivity measurements and electromotive force measurements. La1+ x Sr1− x Ga3O7−δ samples exhibited a p -type behavior with generally increased conductivity with increased substitution of lanthanum for strontium, which reached a saturation value of ∼10−1 S·cm−1 at 950°C.  相似文献   

7.
La1− y Sr y Fe1− x Al x O3−δ perovskites were studied as potential materials for solid-oxide fuel cell (SOFC) cathodes. The phase relations in the LaFeO3–SrFeO3−δ–LaAlO3 system were investigated by X-ray powder diffraction analysis. The defect structure of the La1− y Sr y Fe1− x Al x O3−δ perovskites was investigated by Mössbauer spectroscopy and weight-loss analysis. Relations between the nonstoichiometry and the conductivity of the La1− y Sr y Fe1− x Al x O3−δ perovskites were investigated. The incorporation of aluminum ( x ) into LaFe1− x AlxO3 was found to have no influence on the defect structure but to decrease the conductivity. The incorporation of strontium ( y ) into La1− y Sr y Fe1− x Al x O3−δ promotes the formation of anion vacancies and Fe4+ that lead to higher conductivity.  相似文献   

8.
SrCe0.9Eu0.1O3−δ thin-film (∼30 μm) tubular hydrogen separation membranes were developed in order to obtain high hydrogen fluxes. Fifteen centimeters long, one end closed, NiO–SrCeO3 tubular supports were fabricated by tape casting, followed by rolling the green tape on a circular rod. SrCe0.9Eu0.1O3−δ powders were prepared by the citrate process and coated on partially sintered NiO–SrCeO3 tubular supports. Leakage-free hydrogen membrane cells were obtained by adjusting the presintering and final sintering temperatures to reduce the difference of linear shrinkage rates between SrCe0.9Eu0.1O3−δ thin films and NiO–SrCeO3 supports. A hydrogen flux of 2.2 cm3/min was obtained for the SrCe0.9Eu0.1O3−δ on Ni–SrCeO3 tubular hydrogen separation membranes at 900°C using 25% H2 balanced with Ar and 3% H2O as the feed gas and He as the sweep gas. Thus, a 40% single pass yield of pure H2 was achieved with this membrane.  相似文献   

9.
In this study we used solid-state synthesis to determine the phase relations in the pyrochlore-rich part of the Bi2O3−TiO2−Nd2O3 system at 1100°C. The samples were analyzed using X-ray powder diffraction and scanning electron microscopy with energy- and wavelength-dispersive spectroscopy. A single-phase pyrochlore ceramic was obtained with the addition of 4.5 mol% of Nd2O3. We determined the solubility limits for the three solid solutions: (i) the pyrochlore solid solution Bi(1.6–1.08 x )Nd x Ti2O(6.4+0.3 x ), where 0.25< x <0.96; (ii) the solid solution Bi4− x Nd x Ti3O12, where 0< x <2.6; and (iii) the Nd2− x Bi x Ti2O7 solid solution, where 0< x <0.35. The determined phase relations in the pyrochlore-rich part are presented in a partial phase diagram of the Bi2O3−TiO2−Nd2O3 system in air at 1100°C.  相似文献   

10.
β-sialon and Nd2O3-doped α-sialon materials of varying composition were prepared by sintering at 1775° and 1825°C and by glass-encapsulated hot isostatic pressing at 1700°C. Composites were also prepared by adding 2–20 wt% ZrO2 (3 mol% Nd2O3) or 2–20 wt% ZrN to the β-sialon and α-sialon matrix, respectively. Neodymium was found to be a fairly poor α-sialon stabilizer even within the α-phase solid solution area, and addition of ZrN further inhibited the formation of the α-sialon phase. A decrease in Vickers hardness and an increase in toughness with increasing content of ZrO2(Nd2O3) or ZrN were seen in both the HIPed β-sialon/ZrO2(Nd2O3) composites and the HIPed Nd2O3-stabiIized α-sialons with ZrN additions.  相似文献   

11.
A tentative phase diagram for the system Al203-Nd2O3 is presented. Three compounds were obtained: a β -A12O3-type compound, the perovskite NdAlO3, and Nd4Al2O9. The perovskite melts congruently (mp 2090°C), and the two other compounds exhibit incongruent melting behavior: β -Nd/Al2O3, mp 1900°C; Nd4Al2O9, mp 1905°C. Two eutectics exist with the following compositions and melting points: 80 mol% Al2O3, 1750°C; 23 mol% Al2O3,1800°C. Nd4Al2O9 decomposes in the solid state at 1780°C.  相似文献   

12.
The microwave dielectric properties and the microstructures of Nd(Co1/2Ti1/2)O3 (NCT) ceramics using starting powders of Nd2O3, CoO, and TiO2 prepared by the conventional solid-state route have been researched. The dielectric constant values (ɛr) saturated at 24.8–27. Quality factor ( Q × f ) values of 37 900–140 000 (at 9 GHz) and the measured τf values ranging from −45 to −48 ppm/°C can be obtained when the sintering temperatures are in the range of 1410°–1500°C. The ɛr value of 27, the Q × f value of 140 000 (at 9 GHz) and the τf value of −46 ppm/°C were obtained for NCT ceramics sintered at 1440°C for 4 h. For applications of high selective microwave ceramic resonator, filter, and antenna, NCT is proposed as a suitable material candidate.  相似文献   

13.
The ionic conductivity in the system (1 − 0.08 x − 0.12 y )ZrO2–0.08 x Y2O3–0.12 y CaO (where x + y = 1 and y = 0–1) has been investigated using the complex impedance technique at 523–973 K. Doping CaO in the ZrO2–Y2O3 system may result in an increase in the activation energy for lattice conduction and depress the grain-boundary effect on conduction. Analysis of the temperature dependence of the lattice conductivity, according to the familiar Arrhenius equation, predicts that the examined ternary system may exhibit greater lattice conductivity than the ZrO2–Y2O3 binary system at higher temperatures. Preliminary explanations for these experimental phenomena and predictions also have been presented.  相似文献   

14.
Studies of the oxidation of Gd and Dy at P O2's from 10−0.3 to 10−14.5 atm and temperatures from 727° to 1327°C indicate both semiconducting and ionic-conducting domains in the sesquioxides formed. At higher temperatures, where dense coarsegrained oxide layers developed, the rate of oxidation in the high- P 02 semiconducting domain yielded oxygen diffusion coefficients in Dy2O3 in excellent agreement with literature values derived from oxidation of partially reduced oxide single crystals. Under the same conditions, the oxidation of Gd yielded oxygen diffusion coefficients in cubic Gd2O3 which are considerably below literature values for monoclinic single-crystal Gd2O3. At lower temperatures, porous scales were formed, and apparent diffusion coefficients derived from oxidation rates show a smaller temperature dependence than the high-temperature data. At low P O2, the oxides behave as ionic conductors, and metal oxidation rates result in estimates of the electronic contribution to the electrical conductivity of the order of 10−6 to 10−7Ω−1 cm−1.  相似文献   

15.
The electrical properties of Sr0.5Ba0.3TiO3 in the presence of Nb2O5 as a donor, 3Li2O · 2SiO2 as a sintering agent, and Bi2O3 as a dopant have been studied. When the compositions of the ceramics were 1 mol Sr0.7Ba0.3TiO3+ 0.5 mol% Nb2O5+ 2 mol% 3Li2O · 2SiO2+ 0.2 mol% Bi2O3, the ceramics were sintered at 1100°C and exhibited the following characteristics: apparent dielectric constant ɛ, 25000; loss factor tan δ, 2%; insulating resistivity ρj, 1010Ω· cm; variation of dielectric constant with temperature Δɛ/ɛ (−25° to +85°C), +10%, −14%. ɛ and tan δ show only small changes with frequency. The study shows this ceramic can be used in multilayer technology.  相似文献   

16.
The microstructure, thermal expansion, mechanical property, and ionic conductivity of samaria-doped ceria (SDC) prepared by coprecipitation were investigated in this paper. The results revealed that the average particle size ranged from 10.9±0.4 to 13.5±0.5 nm, crystallite dimension varied from 8.6±0.3 to 10.7±0.4 nm, and the specific surface area distribution ranged from 62.6±1.8 to 76.7±2.2 m2/g for SDC powders prepared by coprecipitation. The dependence of lattice parameter, a, versus dopant concentration, x , of Sm3+ ion shows that these solid solutions obey Vegard's rule as a ( x )=5.4089+0.10743 x for Ce1− x Sm x O2−1/2 x . For SDC ceramics sintered at 1500°C for 5 h, the bulk density was over 95% of the theoretical density; the maximum ionic conductivity, σ800°C=(22.3±1.14) × 10−3 S/cm with minimum activation energy, E a=0.89±0.02 eV, was found in the Ce0.80Sm0.20O1.90 ceramic. A dense Ce0.8Sm0.2O1.9 ceramic with a grain size distribution of 0.5–4 μm can be obtained by controlling the soaking time at 1500°C. When the soaking time was increased, the microhardness of Ce0.8Sm0.2O1.9 ceramic increased, the toughness slightly decreased, which was related to grain growth with the soaking time.  相似文献   

17.
The influence of Nd2O3 doping on the reaction process and sintering behavior of BaCeO3 is investigated. Formation of BaCeO3 is initiated at 800°C and completed at 1000°C. When Nd2O3 is added to the starting materials, the formation of BaCe1–xNdxO3–δ is delayed and the temperature for complete reaction is increased to 1100°C. Only a BaCe1-xNdxO3–δ solid solution with an orthorhombic crystal structure is present in the specimens for x ≤ 0.1. A secondary phase rich in Ce and Nd is formed within grains and at grain boundaries, when the Nd2O3 content is greater than the solubility limit (x ≥ 0.2). Pure BaCeO3 is difficult to sinter, even at 1500°C, and only a porous microstructure could be obtained. However, doping BaCeO3 with Nd2O3 markedly enhances its sinterability. The enhancement of the sinterability of Nd2O3-doped specimens at x ≤ 0.1 is attributed to the increase in the concentration of oxygen ion vacancies, which increases the diffusion rate. At x ≥ 0.2, the grain size is abnormally coarsened, which is caused by the formation of a liquid phase. While this liquid phase accelerates sintering, its beneficial effect on densification is counteracted by the segregation of the secondary grain-boundary phase which inhibits sintering.  相似文献   

18.
The ionic conductivity of the hafnia-scandia, hafnia-yttria, and hafnia-rare earth solid solutions with high dopant concentrations of 8, 10, and 14 mol% was measured in air at 600° to 1050°C. Impedance spectroscopy was used to obtain lattice conductivity. A majority of the investigated samples exhibited linear Arrhenius plots of the lattice conductivity as a function of temperature. For all investigated dopant concentrations the ionic conductivity was shown to decrease as the dopant radius increased. The activation enthalpy for conduction was found to increase with dopant ionic radius. The fact that the highest ionic conductivity among 14-mol%-doped systems was obtained with HfO2─Sc2O3 suggested that the radius ratio approach should be used to predict the electrical conductivity behavior of HfO2─R2O3 systems. A qualitative model based on the Kilner's lattice parameter map does not seem to apply to these systems. For the three systems HfO2─Yb2O3, HfO2─Y2O3, and Hf2O3─Sm2O3 a conductivity maximum was observed near the dopant concentration of 10 mol%. Deep vacancy trapping is responsible for the decrease in the ionic conductivity at high dopant concentrations. Formation of microdomains of an ordered compound cannot explain the obtained results. A comparison between the ionic conductivities of doped HfO2 and ZrO2 systems indicated that the ionic conductivities of HfO2 systems are 1.5 to 2.2 times lower than the ionic conductivities of ZrO2 systems.  相似文献   

19.
Solid-state sintering was used to make YBa2Cu3O7−δ superconducting bulk materials. Corrosion of the YBa2Cu3O7−δ superconductor material was investigated in a humid environment. The superconducting materials exhibited significant corrosion after 4 h at 80° and 100% relative humidity. A grain-boundary phase was formed, and the percent superconducting phase in the material decreased by approximately 60%. The transition temperature (Tc) decreased with corrosion time. After 2 h of corrosion, Tc decreased from 87 to 81 K.  相似文献   

20.
Six metal oxides (A12O3, TiO2, Nb2O5, Ta2O5, La2O3, and Dy2O3) were melted in a solar furnace and the apparent temperatures at their melting points were measured by means of a conventional optical pyrometer. The apparent temperatures of three of them (A12O3, TiO2, and Nb2O5) were 2025°, 1840°, and 1496°C. respectively, in close agreement with the melting points as determined by other investigators using other methods. The apparent temperatures of the other three varied widely and bore no relation to their melting points. The method therefore does not have general utility for the measurement of unknown melting points.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号