首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Fatty acid activation gene (FAA1) in sake yeast Kyokai no. 701 (K701) was disrupted to investigate the accumulation of ethyl caproate in sake mash. Ethyl caproate, recognized as an important apple-like flavor in sake, is generated by fatty acid synthesis in yeast cells. The disruptant for the FAA1 gene (K701Δfaa1) exhibited a reduced growth rate in a medium containing cerulenin and myristic acid or oleic acid compared with that of the parental strain (K701). In a sake brewing test in which the rice used was polished to 60% of its original size, the fermentation ability of K701Δfaa1 was inferior to that of K701 but the production of ethyl caproate by K701Δfaa1 was 1.6-fold higher than that by K701. These results suggest that the FAA1 gene in sake yeast plays an important role in sake brewing and the accumulation of ethyl caproate.  相似文献   

3.
Sake yeast strains produce a high concentration of ethanol during sake brewing compared to laboratory yeast strains. As ethanol fermentation by yeast cells continues even after cell growth stops, analysis of the physiological state of the stationary phase cells is very important for understanding the mechanism of producing higher concentrations of ethanol. We compared the physiological characteristics of stationary phase cells of both sake and laboratory yeast strains in an aerobic batch culture and under sake brewing conditions. We unexpectedly found that sake yeast cells in the stationary phase had a lower buoyant density and stress tolerance than did the laboratory yeast cells under both experimental conditions. These results suggest that it is difficult for sake yeast cells to enter a quiescent state after cell growth has stopped, which may be one reason for the higher fermentation rate of sake yeast compared to laboratory yeast strains.  相似文献   

4.
A haploid sake yeast strain derived from the commercial diploid sake yeast strain Kyokai no. 7 showed better characteristics for sake brewing compared to the haploid laboratory yeast strain X2180-1B, including higher production of ethanol and aromatic components. A hybrid of these two strains showed intermediate characteristics in most cases. After sporulation of the hybrid strain, we obtained 100 haploid segregants of the hybrid. Small-scale sake brewing tests of these segregants showed a smooth continuous distribution of the sake brewing characteristics, suggesting that these traits are determined by multiple quantitative trait loci (QTLs). To examine these sake brewing characteristics at the genomic level, we performed QTL analysis of sake brewing characteristics using 142 DNA markers that showed heterogeneity between the two parental strains. As a result, we identified 25 significant QTLs involved in the specification of sake brewing characteristics such as ethanol fermentation and the production of aromatic components.  相似文献   

5.
By application of the high-efficiency loss of heterozygosity (HELOH) method for disrupting genes in diploid sake yeast (Kotaka et al., Appl. Microbiol. Biotechnol., 82, 387–395 (2009)), we constructed, from a heterozygous integrant, a homozygous diploid that overexpresses the alcohol acetyltransferase gene ATF2 from the SED1 promoter, without the need for sporulation and mating. Under the conditions of sake brewing, the homozygous integrant produced 1.4 times more isoamyl acetate than the parental, heterozygous strain. Furthermore, the homozygous integrant was more genetically stable than the heterozygous recombinant. Thus, the HELOH method can produce homozygous, recombinant sake yeast that is ready to be grown on an industrial scale using the well-established procedures of sake brewing. The HELOH method, therefore, facilitates genetic modification of this rarely sporulating diploid yeast strain while maintaining those characteristics required for industrial applications.  相似文献   

6.
In the traditional (kimoto) method of sake (Japanese rice wine) brewing, Saccharomyces cerevisiae yeast cells are exposed to lactate, which is produced by lactic acid bacteria in the seed mash. Lactate promotes the appearance of glucose-repression-resistant [GAR+] cells. Herein, we compared the resistance to glucose repression among kimoto, industrial, and laboratory yeast strains. We observed that the frequencies of the spontaneous emergence of [GAR+] cells among the kimoto strains were higher than those among the industrial and laboratory strains. The fermentation ability of a kimoto yeast (strain U44) was lower than that of an industrial strain (K701), as [GAR+] cells generally showed slower ethanol production. The addition of lactate decreased the fermentation abilities of the K701 strain by increasing the number of [GAR+] cells, but it did not affect those of the U44 strain. These results suggest that lactate controlled fermentation by promoting the appearance of [GAR+] cells in the industrial sake strains but not in the kimoto strains.  相似文献   

7.
Sake yeasts are used for sake brewing and have a crucial role in the quality of sake, since they produce not only ethanol but also various compounds that provide sake flavors. Therefore, the appropriate selection and monitoring of a strain used in sake mash is important. However, the identification of specific sake yeast strains has been difficult, because sake yeasts have similar characteristics in taxonomic and physiological analyses. We found amplified fragment length polymorphisms (AFLPs) in the PCR products of the AWA1 gene of sake yeast strains. The AWA1 gene encodes a cell wall protein that is responsible for foam formation in sake mash. This polymorphism of the AWA1 gene can be used for the identification of sake yeast strains.  相似文献   

8.
Sake yeast exhibit various characteristics that make them more suitable for sake brewing compared to other yeast strains. Since sake yeast strains are Saccharomyces cerevisiae heterothallic diploid strains, it is likely that they have heterozygous alleles on homologous chromosomes (heterozygosity) due to spontaneous mutations. If this is the case, segregation of phenotypic traits in haploid strains after sporulation and concomitant meiosis of sake yeast strains would be expected to occur. To examine this hypothesis, we isolated 100 haploid strains from Kyokai No. 7 (K7), a typical sake yeast strain in Japan, and compared their brewing characteristics in small‐scale sake‐brewing tests. Analyses of the resultant sake samples showed a smooth and continuous distribution of analytical values for brewing characteristics, suggesting that K7 has multiple heterozygosities that affect brewing characteristics and that these heterozygous alleles do segregate after sporulation. Correlation and principal component analyses suggested that the analytical parameters could be classified into two groups, indicating fermentation ability and sake flavour. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
Succinate dehydrogenase (SDH) of Saccharomyces cerevisiae consists of four subunits encoded by the SDH1, SDH2, SDH3, and SDH4 genes. We determined the effect of SDH deficiency on the productivity of organic acids in a sake yeast strain Kyokai no. 9. The SDH activity of single disruptants was retained at 30-90% of that of the wild-type strain, but the activity disappeared in double disruptants of the SDH1 and SDH2 or SDH1b (the SDH1 homologue) genes. Two double disruptants showed no growth on a medium containing glycerol as the sole carbon source, while the single disruptants could utilize glycerol. These results indicate that double disruption of the SDH1 and SDH2 or SDH1b genes is required for complete loss of SDH activity and that the SDH1b gene compensates for the function of the SDH1 gene. The sdh1 sdh1b disruptant showed a marked increase in succinate productivity of up to 1.9-fold along with a decrease in malate productivity relative to the wild-type strains under shaking conditions. Under both static and sake brewing conditions, the productivity of these organic acids in the disruptants was virtually unchanged from that in the wild-type strain. Furthermore, SDH activity was undetectable in the wild-type and the disrupted strains under static conditions. These results suggest that SDH activity contributes to succinate production under shaking conditions, but not under static and sake brewing conditions.  相似文献   

10.
Standard brewing yeast cannot utilize larger oligomers or dextrins, which represent about 25% of wort sugars. A brewing yeast strain that could ferment these additional sugars to ethanol would be useful for producing low‐carbohydrate diabetic or low‐calorie beers. In this study, a brewing yeast strain that secretes glucoamylase was constructed by mating. The resulting Saccharomyces cerevisiae 278/113371 yeast was MAT a/α diploid, but expressed the glucoamylase gene STA1 . At the early phase of the fermentation test in malt extract medium, the fermentation rate of the diploid STA1 strain was slower than those of both the parent strain S. cerevisiae MAFF113371 and the reference strain bottom‐fermenting yeast Weihenstephan 34/70. At the later phase of the fermentation test, however, the fermentation rate of the STA1 yeast strain was faster than those of the other strains. The concentration of ethanol in the culture supernatant of the STA1 yeast strain after the fermentation test was higher than those of the others. The concentration of all maltooligosaccharides in the culture supernatant of the STA1 yeast strain after the fermentation test was lower than those of the parent and reference strains, whereas the concentrations of flavour compounds in the culture supernatant were higher. These effects are due to the glucoamylase secreted by the constructed STA1 yeast strain. In summary, a glucoamylase‐secreting diploid yeast has been constructed by mating that will be useful for producing novel types of beer owing to its different fermentation pattern and concentrations of ethanol and flavour compounds. Copyright © 2017 The Institute of Brewing & Distilling  相似文献   

11.
Maltose and glucose fermentations by industrial brewing and wine yeasts strains were strongly affected by the structural complexity of the nitrogen source. In this study, four Saccharomyces cerevisiae strains, two brewing and two wine yeasts, were grown in a medium containing maltose or glucose supplemented with a nitrogen source varying from a single ammonium salt (ammonium sulfate) to free amino acids (casamino acids) and peptides (peptone). Diauxie was observed at low sugar concentration for brewing and wine strains, independent of nitrogen supplementation, and the type of sugar. At high sugar concentrations altered patterns of sugar fermentation were observed, and biomass accumulation and ethanol production depended on the nature of the nitrogen source and were different for brewing and wine strains. In maltose, high biomass production was observed under peptone and casamino acids for the brewing and wine strains, however efficient maltose utilization and high ethanol production was only observed in the presence of casamino acids for one brewing and one wine strain studied. Conversely, peptone and casamino acids induced higher biomass and ethanol production for the two other brewing and wine strains studied. With glucose, in general, peptone induced higher fermentation performance for all strains, and one brewing and wine strain produced the same amount of ethanol with peptone and casamino acids supplementation. Ammonium salts always induced poor yeast performance. The results described in this paper suggest that the complex nitrogen composition of the cultivation medium may create conditions resembling those responsible for inducing sluggish/stuck fermentation, and indicate that the kind and concentration of sugar, the complexity of nitrogen source and the yeast genetic background influence optimal industrial yeast fermentation performance.  相似文献   

12.
13.
The selection of a brewing yeast strain with the required fermentation and recycling characteristics is critical. The yeast strain will influence the rate and extent of fermentation, the flavour characteristics and the overall quality and stability of the finished beer, and consequently, the economic viability of the brewery. Since high gravity worts can have a deleterious effect on yeast fermentation performance, it is imperative that the strain selected be suitable for this environment, which includes a capacity to withstand high osmotic pressures and elevated ethanol levels. Under controlled in vitro osmotic and ethanol induced stresses, there was a decline in mean cell volume in both lager and ale yeast strains. Whilst significant reductions in viability were observed in the lager strains, the ale strains studied were not affected. Cell surface investigations revealed shrinkage of the yeast cells and crenation of the outside envelope under both stresses, although exposure to ethanol had a more marked effect on the yeast cell surface than sorbitol‐induced elevated osmotic pressure.  相似文献   

14.
Biomass and ethanol production by industrial Saccharomyces cerevisiae strains were strongly affected by the structural complexity of the nitrogen source during fermentation in media containing galactose, and supplemented with a nitrogen source varying from a single ammonium salt (ammonium sulfate) to free amino acids (casamino acids) and peptides (peptone). Diauxie was observed at low galactose concentrations independent of nitrogen supplementation. At high sugar concentrations altered patterns of galactose utilisation were observed. Biomass accumulation and ethanol production depended on the nature of the nitrogen source and were different for baking and brewing ale and lager strains. Baking yeast showed improved galactose fermentation performance in the medium supplemented with casamino acids. High biomass production was observed with peptone and casamino acids for the ale brewing strain, however high ethanol production was observed only in the presence of casamino acids. Conversely, peptone was the nitrogen supplement that induced higher biomass and ethanol production for the lager brewing strain. Ammonium salts always induced poor yeast performance. The results with galactose differed from those obtained with glucose and maltose which indicated that supplementation with a nitrogen source in the peptide form (peptone) was more positive for yeast metabolism, suggesting that sugar catabolite repression has a central role in yeast performance in a medium containing nitrogen sources with differing levels of structural complexity.  相似文献   

15.
Malate is an important taste component of sake (a Japanese alcoholic beverage) that is produced by the yeast Saccharomyces cerevisiae during alcoholic fermentation. A variety of methods for generating high malate‐producing yeast strains have been developed to date. We recently reported that a high malate‐producing strain was isolated as a mutant sensitive to dimethyl succinate (DMS), and that a mutation in the vacuolar import and degradation protein (VID) 24 gene was responsible for high malate productivity and DMS sensitivity. In this work, the relationships between heterozygous and homozygous mutants of VID24 and malate productivity in diploid sake yeast were examined and a method was developed for breeding a higher malate‐producing strain. First a diploid yeast was generated with a homozygous VID24 mutation by genetic engineering. The homozygous integrants produced more malate during sake brewing and grew more slowly in DMS medium than wild‐type and heterozygous integrants. Thus, the genotype of the VID24 mutation influenced the level of malate production and sensitivity to DMS in diploid yeast. Then a homozygous mutant from a heterozygous mutant was obtained without genetic engineering by ultraviolet irradiation and culturing in DMS with nystatin enrichment. The non‐genetically modified sake yeast with a homozygous VID24 mutation exhibited a higher level of malate productivity than the parent heterozygous mutant strain. These findings provide a basis for controlling malate production in yeast, and thereby regulating malate levels in sake. Copyright © 2016 The Institute of Brewing & Distilling  相似文献   

16.
Vacuolar H+‐ATPase (V‐ATPase) is thought to play a role in stress tolerance. In this study it was found that bottom‐fermenting yeast strains, in which the V‐ATPase‐related genes DBF2, VMA41/CYS4/NHS5 and RAV2 were overexpressed, exhibited stronger ethanol tolerance than the parent strain and showed increased fermentation rates in a high‐sugar medium simulating high‐gravity fermentation. Among the strains examined, the DBF2‐overexpressing bottom‐fermenting yeast strain exhibited the highest ethanol tolerance and fermentation rate in YPM20 medium. Using this strain, high‐gravity fermentation was performed by adding sugar to the wort, which led to increased fermentation rates and yeast viability compared with the parent strain. These findings indicate that V‐ATPase is a stress target in high‐gravity fermentation and suggests that enhancing the V‐ATPase activity increases the ethanol tolerance of bottom‐fermenting yeast, thereby improving the fermentation rate and cell viability under high‐gravity conditions. Copyright © 2012 The Institute of Brewing & Distilling  相似文献   

17.
A procedure is described whereby the cytoplasmically-inherited killer character of a laboratory strain of Saccharomyces cerevisiae is transferred to a brewing yeast strain. Neither preparation of protoplasts of the brewing yeast nor mutation of its nuclear genes are required for this process. The brewing yeast killer strains produced have the advantages over their parent brewing cell that they kill sensitive yeasts and are immune to the killing action of certain killer yeasts. The method described offers significant advantages over the process of transformation as a means of genetically manipulating commercial yeasts.  相似文献   

18.
Self‐cloning strains of industrial brewing yeast were constructed, in which one allele of α‐acetohydroxyacid synthase (AHAS) gene (ILV2) was disrupted by integrating Saccharomyces cerevisiae genes, γ‐glutamylcysteine synthetase gene (GSH1) and copper resistant gene (CUP1) into the locus of ILV2. The self‐cloning strains were selected for their resistance to CuSO4 and identified by PCR amplification. The results of AHAS and glutathione (GSH) assay from fermentation with the self‐cloning strains in 500‐mL conical flask showed that AHAS activity decreased and GSH content increased compared with that of host yeasts. The results of pilot scale brewing in 5‐L fermentation tank also indicated that GSH content in beer fermented with self‐cloning strains T5‐3 and T31‐2 was 1.3 fold and 1.5 fold of that of host QY5 and QY31, respectively; and diacetyl content decreased to 64% and 58% of their hosts, respectively. The self‐cloning strains do not contain any heterologous DNA, they may be more acceptable to the public.  相似文献   

19.
Beer brewing using a fusant between a sake yeast (a lysine auxotrophic mutant of sake yeast K-14) and a brewer's yeast (a respiratory-deficient mutant of the top fermentation yeast NCYC1333) was performed to take advantage of the beneficial characteristics of sake yeasts, i.e., the high productivity of esters, high tolerance to ethanol, and high osmotolerance. The fusant (F-32) obtained was different from the parental yeasts regarding, for example, the assimilation of carbon sources and tolerance to ethanol. A brewing trial with the fusant was carried out using a 100-l pilot-scale plant. The fusant fermented wort more rapidly than the parental brewer's yeast. However, the sedimentation capacity of the fusant was relatively low. The beer brewed using the fusant contained more ethanol and esters compared to that brewed using the parental brewer's yeast. The fusant also obtained osmotolerance in the fermentation of maltose and fermented high-gravity wort well.  相似文献   

20.
Clotrimazole-resistant mutants from sake yeasts show improved fermentative activity in sake mash and pleiotropic drug resistance (PDR). The PDR mechanism is interpreted by overexpression of ATP-binding cassette (ABC) transporters, which extrude various kinds of drugs out of a cell. In a clotrimazole-resistant mutant, CTZ21, isolated from the haploid sake yeast HL69, the levels of mRNA for three major ABC transporter genes, PDR5, SNQ2, and YOR1, markedly increased. These three genes of CTZ21 were disrupted to investigate which participated in the improved fermentative activity of CTZ21. The fermentative activities of Δpdr5 and Δsnq2 strains of CTZ21 were reduced to that of HL69 in the initial and middle stages of fermentation. In the last stage, however, the sake meter [(1/gravity-1) × 1443] of the Δpdr5 and Δsnq2 strains rose faster than that of HL69. On the other hand, a Δyor1 strain of CTZ21 fermented sake mash in a manner nearly identical to that of CTZ21 until the last stage of fermentation. But in the last stage, fermentation of the Δyor1 slowed down compared with that of CTZ21. A Δyor1 strain of HL69 also exhibited much reduced fermentative activity in the middle and last fermentation stages. The YOR1 gene seems necessary for sake fermentation to be completed efficiently. The ATP content in sake mash brewed with CTZ21 was drastically decreased throughout the whole fermentation period. This low ATP level was restored to a medium level in the cases of both the Δpdr5 and Δsnq2 strains of CTZ21. In contrast, the Δyor1 of CTZ21 exhibited a low ATP level in sake mash in the same manner as CTZ21. These results suggest that the low ATP level of CTZ21 contributes to a certain extent its improved fermentative activity in the initial and middle stages of sake fermentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号