首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 609 毫秒
1.
p型ZnO掺杂及其发光器件研究进展与展望   总被引:1,自引:1,他引:0  
ZnO是一种新型的Ⅱ-Ⅵ族宽带隙半导体,具有很多优异的的光电性能.但一般制备出的ZnO薄膜材料均是n型,很难实现p型的掺杂.ZnO的p型掺杂是实现其光电器件应用的关键技术,也是目前ZnO研究的关键课题.目前在p型ZnO的掺杂理论和实验方面都有很大的进展,对此进行了详细的分析与论述,并且展望了p型ZnO薄膜制备的前景.  相似文献   

2.
ZnO材料以其优良的光电特性和相对低廉的成本而倍受人们的青睐,但是要获得高质量的p型ZnO薄膜难度极大,这已成为阻碍ZnO基光电器件走向实用化的主要障碍。综述了p型ZnO薄膜掺杂面临的困难、p型ZnO掺杂理论进展及实现p型ZnO薄膜的各种掺杂方法,并对p型ZnO薄膜的各种制备工艺方法进行了概括和比较,最后指出了提高p型ZnO薄膜质量的努力方向。  相似文献   

3.
ZnO薄膜p型掺杂的研究进展   总被引:3,自引:0,他引:3  
ZnO薄膜作为一种多功能半导体材料,近年来一直受到广泛关注.然而,如何制备高质量的p型ZnO薄膜是实现其实用化的关键.概括了p型掺杂困难的原因,并指出Ⅲ-Ⅴ族元素共掺杂可能是p型掺杂的最好方法.简单回顾了ZnO薄膜p型掺杂的研究现状,并对今后的发展趋势进行了展望.  相似文献   

4.
采用射频磁控溅射方法,常温条件下以N2作为N掺杂源,在玻璃基底制备了N掺杂Al:ZnO薄膜。在真空氛围下对样品进行了不同温度的退火处理15 min。通过X射线衍射、霍尔效应测试、紫外-可见光谱和X射线光电子能谱(XPS)仪分析了退火对样品结构和光电性能的影响。结果表明真空400℃退火15 min时成功制备出性能优异的p型ZnO薄膜,其空穴载流子浓度为3.738×1020cm~(-3),电阻率为1.299×10~(-2)Ω·cm,样品可见光透射率达到了85%以上。XPS分析说明No受主缺陷的含量大于(N2)o施主缺陷导致薄膜实现了p型转变。  相似文献   

5.
获得高质量稳定的p型ZnO薄膜是实现ZnO基光电器件化的关键.目前,国际上公认V族元素中的N替代O位(No)是实现p型ZnO较理想的掺杂途径.但p-ZnO:N薄膜的导电性能会随着时间、光照、温度条件发生变化,稳定性不足.大量的理论和实验研究表明N基二元共掺( N-X)可以提高N在ZnO薄膜中的固溶度,浅化N的受主能级,且在很大程度上能够改善p型ZnO的导电性能,有利于获得稳定的p型ZnO薄膜.为此,从N基施主受主共掺、双受主共掺以及其它共掺方面综述了N-X共掺p型ZnO薄膜的研究现状.  相似文献   

6.
喷雾热解法生长N掺杂ZnO薄膜机理分析   总被引:8,自引:0,他引:8  
通过超声喷雾热解工艺,以醋酸锌和醋酸铵的混合水溶液为前驱溶液,在单晶Si(100) 衬底上制备了N掺杂ZnO薄膜,采用热质联用分析(TG—DSC—MS)、X射线衍射(XRD)、场发射扫描电镜(FESEM)和霍耳效应(Hall-effect)测试等手段研究了喷雾热解工艺下N掺杂ZnO薄膜的生长机理、晶体结构和电学性能.结果表明,随衬底温度的不同,薄膜呈现出不同的生长机理,从而影响薄膜的晶体结构和电学性能.在优化的衬底温度下,实现了ZnO薄膜的p型掺杂,得到的p型ZnO薄膜具有优异的电学性能,载流子浓度为3.21×1018cm-3,霍耳迁移率为110cm2·V-1s-1,电阻率为1.76×10-2Ω·cm.  相似文献   

7.
掺杂ZnO薄膜的研究现状   总被引:1,自引:0,他引:1  
ZnO薄膜的性质取决于不同的掺杂元素和不同的制备工艺.概述了掺杂ZnO薄膜的研究现状,分析了不同掺杂组分对ZnO薄膜的p型转变特性、发光特性以及铁磁性质的影响,认为稀土掺杂可能使ZnO薄膜产生新的发光特性,共掺杂技术可能是实现ZnO薄膜特性改变的新途径.  相似文献   

8.
Sol-Gel法制备ZnO:Al透明导电薄膜   总被引:9,自引:0,他引:9  
采用Sol-Gel工艺在普通载玻片上制备出C轴择优取向性、高可见光透过率以及高电导率的Al3+离子掺杂的ZnO透明导电薄膜.利用SEM、XRD等分析手段对薄膜进行了表征.研究结果表明:所制备的薄膜为纤锌矿型结构,表面平整、致密.通过标准四探针法及UVS透射光谱详细研究了Al3+离子掺杂的ZnO薄膜的电学与光学性能.实验发现,当Al3+离子掺杂浓度为0.8%时,前处理温度为400℃,退火温度为550℃,真空退火温度为550℃时,薄膜具有较好的导电性,电阻率为3.03× 10-3Ω@cm,其在可见光区的透过率超过80%.  相似文献   

9.
ZnO薄膜作为一种多功能半导体材料,近年来一直受到广泛关注。然而,如何制备高质量的p型ZnO薄膜是实现其实用化的关键。概括了p型掺杂困难的原因,并指出Ⅲ-Ⅴ族元素共掺杂可能是p型掺杂的最好方法。简单回顾了ZnO薄膜p型掺杂的研究现状,并对今后的发展趋势进行了展望。  相似文献   

10.
ZnO作为重要的第三代半导体材料在光电领域具有广泛的应用前景因而引起越来越多的关注,ZnO薄膜的p型掺杂是实现ZnO基光电器件的关键,也是ZnO材料的主要研究课题.本文论述了ZnO薄膜P型转变的难点及其解决方法,概述了ZnO薄膜p型掺杂的研究现状,提出了有待进一步研究的问题.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号