首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
低成本MEMS惯性传感器被广泛应用于足绑式行人导航中,但由于MEMS惯性传感器零偏随时间会产生累积误差,行人真实航向角与脚部解算的航向角有差值,传统零速修正算法对航向角缺乏观测导致行人航向发散,成为行人导航的主要误差源, 行人在室内行走尤其是在室内楼道环境中,行走轨迹大多数情况下是近乎直线的。由此提出一种航向自纠正算法 (HSC),通过采集行人脚部离地阶段数据和一步航向差值,进行行人直行与行走方向判定,根据判定结果在零速时重置航向,将航向自纠正算法与零速更新算法融合,采用一款低成本惯性传感器绑于脚面进行实验,对比传统零速更新算法,该方 法可以显著提高定位精度,定位误差可以达到2%以内, 该算法的实现无需添加额外传感器,仅依靠自身信息矫正航向,具有很好的工程实用价值。  相似文献   

2.
针对基于传统接收信号强度指示(RSSI)指纹定位算法的井下人员定位系统在离线采样阶段指纹数据库采集工作量大、易受井下环境影响,基于行人航迹推算(PDR)算法的定位系统存在误差累计的问题,设计了一种基于改进RSSI指纹定位算法和PDR算法的矿井人员融合定位系统。该系统采用GS1011控制器和MPU9150惯性传感器构成智能终端,将采集的惯性传感器、RSSI和时间戳数据通过井下WiFi网络上传至地面监控中心定位服务器;定位服务器采用扩展卡尔曼滤波对RSSI指纹定位算法和PDR算法的定位信息进行融合,实现井下人员定位。试验结果表明,该系统平均定位误差为1.79m,小于单独采用RSSI指纹定位算法或PDR算法的系统定位误差,定位精度满足井下人员定位要求。  相似文献   

3.
为了解决低成本微机电惯性导航系统存在的累积误差问题,提出一种基于融合行人航迹推算(PDR)和超宽带(UWB)无线定位的实时室内行人导航系统.利用加速度计和磁强计进行初始姿态对准;考虑滤波误差估计,推导了惯性导航算法;依靠加速度计和陀螺仪的"与"逻辑进行行人步态检测;实施零速更新(ZUPT)提供速度误差观测量,利用UWB系统提供位置误差观测量;设计具有野值辨识机制的扩展卡尔曼滤波器进行数据融合.对提出的行人导航算法进行实验验证,结果表明该行人导航算法与传统定位方法相比能够有效提高行人定位精度.实验中,该行人导航算法能够获取低于0.2 m的定位误差,且稳定、不发散.  相似文献   

4.
为解决室内WiFi定位精度较低及行人航位推算(PDR)定位存在累积误差的问题,提出一种基于扩展Kalman滤波(EKF)的WiFi-PDR融合定位算法。WiFi通过改进的WKNN算法实现匹配定位,根据定位点与K近邻点的接收信号强度指示相对偏差进行权值修正,PDR定位采用多重约束条件的步态检测和在线步长估计方法。在此基础上,将EKF作为WiFi和PDR定位的融合滤波器,以降低WiFi定位回跳和PDR累计误差,从而提高定位精度。实验结果表明,在多次行迹转弯条件下,该融合定位算法的定位精度可达1.8 m。  相似文献   

5.
针对复杂室内环境中密集行人定位精度低、超宽带(UWB)基站密度要求高的问题,提出一种基于UWB的密集行人三维协同定位算法。首先使用聚类算法抑制测距数据中较大非视距(NLOS)误差,并使用高斯均值混合滤波抑制标准测量误差;然后提出双层协同定位算法,建立协同定位数学模型,并结合迭代初始值获取策略进行初步定位,降低了基站数量要求,在筛选出NLOS误差较小的测距数据并修正后,进行二次定位;最后考虑行人高机动性,设计一种交互多模型卡尔曼滤波算法,缓解了定位结果跳变问题。实验结果表明,所提算法在弱NLOS环境和强NLOS环境下定位精度分别达到0.11 m、0.17 m,相比其他算法,具有较高定位精度,进一步降低了对UWB基站密度要求。  相似文献   

6.
通过分析当前常用室内定位技术和实施优缺点,引入UWB(Ultra Wide Band,超宽带)定位模块,分析了UWB室内定位系统的原理以及设备上的实现方案,从定位精度和定位动态性能两方面进行关键性技术研究,改进了基于单一方法的定位技术。针对定位精度问题,根据人体下肢运动过程中的对称性特点改进现有的行人航迹推算算法。针对定位动态性能问题,引入惯性导航定位模块,将改进的PDR算法与UWB定位方法进行融合,通过实验测量说明,使用TOA跟踪算法响应速度较快,设计的UWB室内定位系统具有小于5cm的室内定位精度,重复精度小于1cm。  相似文献   

7.
《微型机与应用》2019,(5):53-57
为了提升室内定位系统在复杂环境中的实用性,提出了带非视距检测的超宽带(UWB)/行人航迹推算(PDR)组合定位方法。该方法过滤了UWB测量由于非视距(NLOS)带来的有害数据,采用残差状态量的卡尔曼滤波将UWB和PDR的有效数据进行融合,避免了由于系统非线性带来的近似误差,提升了组合系统的定位精度和鲁棒性。仿真和实验结果表明,组合定位系统能够消除非视距的影响,始终比单个系统定位精度高,其定位误差90%在1 m以内,为基于室内定位的应用提供了可靠的基础数据。  相似文献   

8.
针对地磁场在室内定位中存在模糊解及行人航位推算(PDR)存在累积误差的问题,提出了PDR和地磁融合的室内定位方法.利用了PDR短期精度高的优点,以PDR定位结果为中心缩小地磁匹配区域,采用粒子滤波算法解决地磁指纹的模糊解问题,达到实时修正PDR累积误差的目的.与传统PDR相比,采用了自相关法探测行人不同步态下的步频,提高了步频探测的准确率.通过对实际室内环境进行实验仿真,本文提出的室内定位方法能够有效减少定位误差,实现了2m的定位精度.  相似文献   

9.
在个人导航和基于位置服务(LBS)领域,如何实现低成本、高可靠性、高精度、连续的室内定位仍是研究的热点;然而依靠单一技术的室内定位结果很难满足上述定位要求;文章用粒子滤波(PF)对INS和RFID技术进行融合;对低精度INS使用行人航迹推算算法(PDR),其中步数和步长由峰值检测和Weinberg算法分别测算;根据位置信息对RFID使用加权KNN算法;仿真结果表明:组合定位纠正了INS的累计误差和漂移,实现了自主可靠的连续定位,提高了定位精度,极大程度上优化了系统性能。  相似文献   

10.
为解决室内定位中非视距造成的定位误差问题,在UWB和PDR定位解算的基础上,提出了非视距校正系数β,当β大于经验阈值时,对UWB和PDR定位进行动态加权处理,用PDR定位来修正UWB在非视距下的定位误差。同时,采用了外推的方法得到非视距下PDR初始航向角,并使用广义延拓滤波对行人信息和解算的定位结果进行处理。实验结果显示,该方 法有效降低了非视距情况下的定位误差,经广义延拓滤波处理后,定位结果更符合实际运动轨迹。和单一UWB室内定位方法相比,定位精度提高了53.7%,整体平均定位误差在0.1641m左右。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号