首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 102 毫秒
1.
为提高油浸式电力变压器故障诊断的准确率,提出了一种将AO-PNN模型与油中溶解气体分析法(DGA)相结合的故障诊断方法。该方法引入天鹰优化算法对概率神经网络进行优化,将DGA比值输入模型最终得到变压器的故障诊断结果。仿真结果表明,与其他常用的机器学习模型相比,提出的模型有更高的准确率,可有效运用到变压器故障诊断领域。  相似文献   

2.
为提高变压器故障诊断效果,并改善训练样本数量不平衡对故障诊断的不利影响,提出了一种基于变分自编码预处理深度学习和油中溶解气体分析(dissolved gas-in-oil analysis,DGA)的变压器故障诊断方法.该方法以各样本DGA特征量为诊断模型输入,以各故障状态概率分布为诊断模型输出.首先通过变分自编码器对...  相似文献   

3.
基于DGA的改进BP神经网络的变压器故障诊断方法   总被引:2,自引:0,他引:2  
介绍了基于DGA的改进BP神经网络电力变压器故障诊断方法,并进行了仿真。  相似文献   

4.
基于模糊隶属函数的变压器多参量故障综合诊断方法   总被引:2,自引:0,他引:2  
袁蕾  杜林  吴俊美  蔡华  杨舒  丁严 《高压电器》2011,47(5):35-42
大型油浸电力变压器是电力系统中最关键的设备之一,其故障诊断技术深受关注.为此,笔者在汇总、整理现有的反映变压器运行状态各种数据的基础上,根据目前电力部门对变压器故障的监测与检修状况,按组成结构建立电力变压器故障的特征参量及故障模式的对应关系.利用模糊数学方法分析了不同电气试验项目的隶属函数,克服了隶属函数的形式及其参数...  相似文献   

5.
基于DGA的变压器故障诊断多专家融合策略   总被引:5,自引:2,他引:5  
介绍了基于油中溶解气体分析(DGA)的电力变压器故障综合诊断。采用的诊断判据主要包括改良三比值法、大卫三角形法、神经网络和范例推理。在多专家(多诊断判据)的参与下,可能出现诊断结果相互冲突的问题,而如何融合不同诊断判据下的诊断结果仍是一个难点。为解决这一问题,在把各诊断结果分解为放电和过热故障的基础上,引入了多专家加权投票策略(加权多数算法)。权重系数根据各诊断判据的诊断正确率初步确定。实践证明了该方法的可行性。  相似文献   

6.
基于贝叶斯网络和DGA的变压器故障诊断   总被引:8,自引:3,他引:8  
用 3步法构造贝叶斯网络 (BN)方法 ,结合油中溶解气体分析 (DGA)的三比值法后 ,引入大型变压器的故障诊断 ,提出了基于BN理论和DGA方法的变压器智能故障诊断模型。 2 2台故障变压器的诊断实例验证此法有效  相似文献   

7.
基于支持向量机和DGA的变压器状态评估方法   总被引:7,自引:1,他引:7  
电力变压器老化、故障机理复杂,具有不确定性,难以进行准确的状态评估,故提出了一种基于支持向量机的二叉树多级分类器变压器状态评估方法,该模型以变压器油中溶解气体的含气量和产气速率为评价指标,结合<电力设备预防性试验规程>和<变压器油中溶解气体分析和判断导则>制定了半梯形百分制评分模型对选定的评价指标进行评分;将变压器状态分为良好、一般、注意、较差4种状态,利用从变压器历史试验数据库中归纳整理的样本分别对三级支持向量机分类器进行训练,经过训练的分类器能够正确判断出变压器所处的状态.实例分析结果表明该方法的有效性和实用性.  相似文献   

8.
《高压电器》2015,(9):39-43
以灰色预测和理想点解理论(TOPSIS)为基础,研究基于油中溶解气体体积分数的变压器状态预测及其应用。该方法不同于目前单纯依据数学算法预测油中溶解气体含量的方法,而是从系统的角度综合考虑各特征参数及三比值规则,对故障状态贴近度进行预测。首先根据理想点解法计算各期油中气体体积分数三比值的故障贴近度,以此作为变压器三比值状态信息,然后根据灰色GM(1,1)模型,对变压器三比值故障状态贴进度发展趋势进行预测,最后得到其故障的贴近度,反应了变压器故障状态的发展趋势,对状态维修具有较直观的参考意义。实例数据分析验证了该预测方法的有效性。  相似文献   

9.
为对变压器进行准确的故障诊断,将油中溶解气体分析(dissolved gasses analysis, DGA)与人工智能技术相结合,提出了一种基于鲸鱼优化算法(whale optimization algorithm, WOA)优化LogitBoost-决策树的变压器故障诊断模型。该模型以决策树作为弱学习器,通过将Logit Boost集成算法作为集成框架使多个决策树集成为一个强学习器,并构建了一种基于鲸鱼优化算法的优化策略去优化LogitBoost-决策树模型中的决策树棵数及决策树的最大分裂次数。实验表明,所构建的WOA-Logit Boost-DT变压器诊断模型与常用的决策树、支持向量机、三比值等诊断模型相比,综合诊断精度分别提高了约4%、10%、21%。所构建的相关模型能为变压器的故障诊断提供技术支持。  相似文献   

10.
变压器是电力系统中的重要设备,其安全与稳定直接影响着国民经济的健康发展。油中溶解气体分析(Dissolved Gas Analysis,DGA)是分析变压器故障类别的重要手段。卷积神经网络是深度学习的一种模型,广泛应用于图像识别、语音处理等领域,具有非常好的分类能力。文章选取了变压器的五种油中溶解气体含量作为模型输入量,在借鉴传统浅层BP神经网络油中气体分析方法的基础上,针对BP神经网络表达能力不足以及容易过拟合的缺点,将卷积神经网络应用于变压器故障诊断,并与BP神经网络的分类效果进行了对比,通过算例研究证明了卷积神经网络的效果更优。文章也对卷积神经网络的卷积核个数、卷积核大小以及采样宽度对分类效果的影响进行了探讨。  相似文献   

11.
王春明  朱永利 《电测与仪表》2019,56(15):143-147
针对变压器故障诊断中模型训练时间长,容易过拟合,噪声敏感等问题,本文提出一种深度降噪极限学习机变压器故障诊断方法。将极限学习机与降噪自编码器结合构建降噪自编码极限学习机,并将其堆叠构建深度降噪极限学习机模型进行特征提取,将提取的特征输入常规极限学习机进行分类,整体构成深度降噪极限学习机分类算法。该算法能有效应对电压器油中溶解气体分析数据中的噪声且具有非常快的学习速度。仿真实验结果表明,相比于传统BP神经网络,本文方法有更高的故障诊断正确率和更短的训练时间,是一种有效的变压器故障诊断方法。  相似文献   

12.
基于改进模糊ISODATA算法的变压器故障诊断   总被引:2,自引:0,他引:2  
王子建  何俊佳  尹小根 《高压电器》2006,42(1):11-13,17
模糊ISODATA算法在基于变压器DGA的故障诊断中存在一些问题。如:模式空间的划分缺乏依据,聚类分析时没有考虑各种气体成分对故障反映的灵敏度等。笔者对此进行了改进,引入了一个描述不同气体成分对故障反映灵敏度的指标权向量,并在每次迭代运算之后对聚类中心进行分解和合并处理。利用改进的ISODATA算法对3起变压器故障进行了分析,得到了比较高的判断准确度。  相似文献   

13.
对向传播(CP)算法是一种有教师学习和无教师学习算法的混合体,既具有良好的模式识别性能,又能很好地解决反馈型神经网络的收敛问题。笔者提出了基于CP分类器人工神经网络的变压器故障诊断方法,建立了CP组合神经网络模型,通过比较不同训练情况下的正判率来确定CP网络中的训练次数和竞争层神经元的个数。实例证明该模型诊断结果的正判率比改良电协研法和IEC三比值法有较大的提高,具有较高的诊断准确率和应用价值。  相似文献   

14.
针对传统变压器故障诊断方法的不足,介绍了多种智能诊断方法在基于油中溶解气体分析(dissolved gas-in-oil analysis, DGA)的变压器故障诊断中的应用,包括人工神经网络、模糊理论、专家系统、灰关联分析及其他智能方法。通过对这些智能诊断方法的分析,得出其优缺点及需要改进的方案,为研究人员选择最优油浸式电力变压器故障诊断方法提供参考。最后对基于DGA的变压器故障智能诊断方法进行了展望,并分析了未来的发展方向。  相似文献   

15.
鉴于核Fisher判别分析技术(KFDA)在模式识别问题中表现出的良好性能,提出了基于KFDA的变压器故障诊断模型,该模型首先提出了区分放电及过热两大类故障的特征量,并用KFDA分类器来识别类内故障的具体类别。采用基于网格搜索的交叉验证法来选择模型参数,避免了参数选择的盲目性和随意性。实例分析表明,该模型具有训练时间短、不存在局部极小等优点,与IEC三比值及改良电协研法相比,具有更好的故障识别效果。  相似文献   

16.
在对传统比值法的编码组合进行模糊化处理和统计及分析的基础上得到了编码-故障模糊关系矩阵Rf;以现场用常现色谱方法检测到的特征气体比值所对应的27组编码组合的隶属度作为特征输入矢量,通过综合评判求得故障输出矢量,并确定出故障类型。结果表明,应用本文建立的模糊关系矩阵对变压器故障进行综合评判诊断的方法是有效的。  相似文献   

17.
基于RPROP算法的变压器油中溶解气体分析故障诊断   总被引:1,自引:1,他引:1  
在分析BP算法和RPROP(振荡传播)算法原理的基础上,指出了RPROP算法具有收敛速度快、不容易陷入局部极小点、自适应能力强等优点,并分析了原因。将RPROP算法训练的多层前馈神经网络用于变压器油中溶解气体分析故障诊断,给出了网络模型,分析了隐层神经元数目对网络训练和诊断的影响。变压器油中溶解气体数据的训练和诊断表明,RPROP算法的收敛速度快于BP算法、加动量项BP算法,并且具有较高的诊断准确率,是一种有效的方法。  相似文献   

18.
深度学习神经网络在电力变压器故障诊断中的应用   总被引:1,自引:0,他引:1  
石鑫  朱永利 《电力建设》2015,36(12):116-122
由于电力变压器发生故障时油色谱在线监测数据无标签,工程现场往往会得到大量无标签故障样本,而传统的故障诊断方法在对变压器故障类型进行判别时往往无法充分利用这些无标签故障样本。该文基于深度学习神经网络(deep learning neural network,DLNN),构建了相应的分类模型,分析并用典型数据集对其分类性能进行测试。在此基础上提出一种电力变压器故障诊断新方法,它能够有效利用大量电力变压器油色谱在线监测无标签数据和少量故障电力变压器油中溶解气体分析(dissolved gas-in-oil analysis,DGA)实验数据进行训练,并以概率形式给出故障诊断结果,具有更优的故障判别性能,能够为变压器的检修提供更为准确的参考信息。工程实例测试结果表明,该方法正确可行,诊断性能优于三比值、BP神经网络和支持向量机的方法,适用于电力变压器的故障诊断。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号