首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
The physico-chemical properties and activity of Ce-Zr mixed oxides, CeO2 and ZrO2 in CO oxidation have been studied considering both their usefulness as supports for Au nanoparticles and their contribution to the reaction. A series of Ce1−xZrxO2 (x = 0, 0.25, 0.5, 0.75, 1) oxides has been prepared by sol–gel like method and tested in CO oxidation. Highly uniform, nanosized, Ce-Zr solid solutions were obtained. The activity of mixed oxides in CO oxidation was found to be dependent on Ce/Zr molar ratio and related to their reducibility and/or oxygen mobility. CeO2 and Ce0.75Zr0.25O2, characterized by the cubic crystalline phase show the highest activity in CO oxidation. It suggests that the presence of a cubic crystalline phase in Ce-Zr solid solution improves its catalytic activity in CO oxidation. The relation between the physico-chemical properties of the supports and the catalytic performance of Au/Ce1−xZrxO2 catalysts in CO oxidation reaction has been investigated. Gold was deposited by the direct anionic exchange (DAE) method. The role of the support in the creation of catalytic performance of supported Au nanoparticles in CO oxidation was significant. A direct correlation between activity and catalysts reducibility was observed. Ceria, which is susceptible to the reduction at the lowest temperature, in the presence of highly dispersed Au nanoparticles, appears to be responsible for the activity of the studied catalysts. CeO2-ZrO2 mixed oxides are promising supports for Au nanoparticles in CO oxidation whose activity is found to be dependent on Ce/Zr molar ratio.  相似文献   

2.
Au–Pd/Al2O3 catalyst was prepared by modified impregnation method. It was found that the catalyst calcined in air at 473 K showed higher CO oxidation activity in comparison with the catalysts treated at other temperature. Nitrogen adsorption, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and X-ray absorption near edge structure spectroscopy (XANES) techniques were employed to study the relationship between the surface/bulk structures of these catalysts and their catalytic performance. The results indicated the higher activity was attributed to the smaller pore volume and co-existence of PdO and Au0 in their surface. The formation of AuxPdy alloy was unfavorable for the catalytic reaction.  相似文献   

3.
The catalytic activity of Pt on alumina catalysts, with and without MnOx incorporated to the catalyst formulation, for CO oxidation in H2-free as well as in H2-rich stream (PROX) has been studied in the temperature range of 25–250 °C. The effect of catalyst preparation (by successive impregnation or by co-impregnation of Mn and Pt) and Mn content in the catalyst performance has been studied. A low Mn content (2 wt.%) has been found not to improve the catalyst activity compared to the base catalyst. However, catalysts prepared by successive impregnation with 8 and 15 wt.% Mn have shown a lower operation temperature for maximum CO conversion than the base catalyst with an enhanced catalyst activity at low temperatures with respect to Pt/Al2O3. A maximum CO conversion of 89.8%, with selectivity of 44.9% and CO yield of 40.3% could be reached over a catalyst with 15 wt.% Mn operating at 139 °C and λ = 2. The effect of the presence of 5 vol.% CO2 and 5 vol.% H2O in the feedstream on catalysts performance has also been studied and discussed. The presence of CO2 in the feedstream enhances the catalytic performance of all the studied catalysts at high temperature, whereas the presence of steam inhibits catalysts with higher MnOx content.  相似文献   

4.
Gold nanoparticles supported on alumina have been produced using the anionic exchange method and ammonia washing procedure. The catalysts are tested in the reaction of total oxidation of a mixture of light hydrocarbons and carbon monoxide in order to study the possibility of application in the reduction of cold start emissions. The obtained results are promising according to the temperature range observed for the oxidation of unsaturated hydrocarbons. The results obtained for acetylene confirms the difference of oxidation of this hydrocarbon over gold catalysts. An ageing procedure has been employed. This procedure does not affect the comportment of the catalysts versus hydrocarbon oxidation.  相似文献   

5.
A transient kinetic model was developed for the CO oxidation by O2 over a Pt/Rh/CeO2/γ-Al2O3 three-way catalyst. The experiments which were modelled consisted of periodically switching between a feed stream containing 0.5 mol% CO in helium and a feed stream containing 0.5 mol% O2 in helium, with a frequency from 0.1 to 0.25 Hz, in the temperature range 393–433 K. These temperatures are representative for cold start conditions. The transient experiments yield information about the reaction mechanism. A transient kinetic model based on elementary reaction steps was developed which describes the experimental data in the above mentioned range of experimental conditions adequately. The kinetic model consists of two monofunctional and one bifunctional contribution. The first monofunctional reaction path comprises competitive adsorption of CO and O2 on the noble metal surface followed by a surface reaction. The second monofunctional reaction path consists of CO adsorption on an oxygen atom adsorbed on the noble metal surface, followed by a reaction to CO2. The bifunctional reaction path involves a reaction between CO adsorbed on the noble metal surface and oxygen from ceria at the noble metal/ceria interface. Also, reversible adsorption of carbon dioxide on the support is taken into account. The kinetic parameters, i.e. preexponential factors and activation energies for the different elementary reaction steps, and the oxygen storage capacity were estimated using multi-response non-linear regression analysis of the oxygen, carbon monoxide and carbon dioxide outlet concentrations.  相似文献   

6.
Water formed during hydrotreating of oxygen-containing feeds has been found to affect the performance of sulphided catalysts in different ways. The effect of water on the activity of sulphided NiMo/γ-Al2O3 and CoMo/γ-Al2O3 catalysts in hydrodeoxygenation (HDO) of aliphatic esters was investigated in a tubular reactor by varying the amount of water in the feed. In additional experiments, H2S was added to the feed, alone and simultaneously with water.

Under the same conditions, the NiMo catalyst exhibited a higher activity than the CoMo catalyst. The ester conversions decreased with increase in the amount of added water. When H2S and water were added simultaneously, the conversion increased to the same level as without water addition on the NiMo catalyst and reached a higher value on the CoMo catalyst. The conversions were highest, however, when only H2S was added. Unfortunately, the conversions decreased with time under all conditions. On both catalysts, the total yield of the C7 and C6 hydrocarbons decreased with the amount of added water, while the concentrations of the oxygen-containing intermediates increased. The presence of H2S improved the total hydrocarbon yield and shifted the main products towards the C6 hydrocarbons. Thus, the addition of H2S effectively compensated the inhibition by water.  相似文献   


7.
In this study, a novel bifunctional catalyst IrFe/Al2O3, which is very active and selective for preferential oxidation of CO under H2-rich atmosphere, has been developed. When the molar ratio of Fe/Ir was 5/1, the IrFe/Al2O3 catalyst performed best, with CO conversion of 68% and oxygen selectivity towards CO2 formation of 86.8% attained at 100 °C. It has also been found that the impregnation sequence of Ir and Fe species on the Al2O3 support had a remarkable effect on the catalytic performance; the activity decreased following the order of IrFe/Al2O3 > co-IrFe/Al2O3 > FeIr/Al2O3. The three catalysts were characterized by XRD, H2-TPR, FT-IR and microcalorimetry. The results demonstrated that when Ir was supported on the pre-formed Fe/Al2O3, the resulting structure (IrFe/Al2O3) allowed more metallic Ir sites exposed on the surface and accessible for CO adsorption, while did not interfere with the O2 activation on the FeOx species. Thus, a bifunctional catalytic mechanism has been proposed where CO adsorbed on Ir sites and O2 adsorbed on FeOx sites; the reaction may take place at the interface of Ir and FeOx or via a spill-over process.  相似文献   

8.
采用柠檬酸络合法制备一系列不同铜铈比的Cu-Ce-O/γ-Al_2O_3催化剂,用XRD、H2-TPR对其进行表征,采用连续固定床微反装置对Cu-Ce-O/γ-Al_2O_3催化剂CO催化氧化活性进行评价。结果表明,Cu-Ce-O/γ-Al_2O_3催化剂的XRD图谱中除归属于γ-Al_2O_3的晶相峰外,还出现CuO和CeO_2的晶相峰。高温水热引起活性组分CeO_2的晶粒聚集、长大和尖晶石结构CuAl2O4物质的生成;CuO-CeO_2之间的共生共存与相互作用,使得Cu-Ce-O/γ-Al_2O_3催化剂中具有非完整结构的[Cu2+1-xCu+x][O1-12x12x]增多,Cu+离子和氧空位增多,有利于其H2-TPR还原峰温度向低温区偏移,有利于提高其CO的催化氧化活性,使得Cu-Ce-O/γ-Al_2O_3催化剂的TCO50和TCO90降低。Cu与Ce物质的量比为5∶5制备的Cu-Ce-O/γ-Al_2O_3-55催化剂的TCO50和TCO90分别降至最低的162℃和199℃,表明此时的Cu-Ce-O协同效应最佳;CuO-CeO_2二相的共生共存与相互作用有利于减少高温水热环境下活性组分的聚集和晶粒长大,有利于Cu-Ce-O/γ-Al_2O_3催化剂能够保持较高的CO催化氧化活性。  相似文献   

9.
通过制备高纯度的前驱体湃铝石获得了η-Al2O3材料,采用XRD验证了η-Al2O3与γ-Al2O3在晶相结构上的差异,比较了两者的表面形貌、织构及酸碱性能,结果显示,η-Al2O3与γ-Al2O3的比表面积相当,但η-Al2O3具有更弱的弱碱位和较少的强碱位,并拥有丰富的中等强度酸性位。将η-Al2O3与γ-Al2O3作为催化剂应用于CS2水解反应,结果表明,在(200~450) ℃测试温度范围内,η-Al2O3催化剂对CS2的水解活性始终优于γ-Al2O3,两种催化剂上CS2反应的浓度效应也明显不同,推测与它们的酸碱性质影响了对CS2的吸附能力有关,导致两者催化CS2水解反应遵循了不同的机制。  相似文献   

10.
11.
The influence of the Ti-grafting of γ-Al2O3, SiO2 and SnO2 over Pd-supported catalysts and the presence of CO2 as co-feeding, in the catalytic combustion of methane, were investigated. Important modifications in the catalytic performances due to grafting of supports were observed. The grafting method leads to formation of titania nanoparticles on the support surface. The interaction between Ti and support, changes in the size of Pd particles, changes in the acidity of supports could explain the modifications in catalytic performances due to grafting. The catalytic performances depend on the nature of the support and are different when CO2 is introduced in the feed. CO2 could play an important role, increasing or inhibiting the catalytic performance.  相似文献   

12.
Zirconia supported on alumina was prepared and characterized by BET surface area, X-ray diffraction (XRD), X-ray photoelectron spectra (XPS), temperature programmed desorption (TPD), and pulse reaction. 0.2% Pd/ZrO2/Al2O3 catalyst were prepared by incipient wetness impregnation of supports with aqueous solution of Pd(NO3)2. The effects of support properties on catalytic activity for methane combustion and CO oxidation were investigated. The results show that ZrO2 is highly dispersed on the surface of Al2O3 up to 10 wt.% ZrO2, beyond this value tetragonal ZrO2 is formed. The presence of a small amount of ZrO2 can increase the surface area, pore volume and acidity of support. CO–TPD results show that the increase of CO adsorption capacity and the activation of CO bond after the presence of ZrO2 lead to the increase of catalytic activity of Pd catalyst for CO oxidation. CO pulse reaction results indicate that the lattice oxygen of support can be activated at lower temperature following the presence of ZrO2, but it does not accelerate the activity of 0.2% Pd/ZrO2/Al2O3 for methane combustion. 0.2% Pd/ZrO2/Al2O3 dried at 120 °C shows highest activity for CH4 combustion, and the activity can be further enhanced following the repeat run. The increase of treatment temperature and pre-reduction can decrease the activity of catalyst for CH4 combustion.  相似文献   

13.
分别以碳纳米管(CNTs)和68%浓HNO3处理的CNTs为载体,采用超声辅助的浸渍法制备负载型Cu O-CeO_2复合氧化物催化剂,用于富氢气中CO选择氧化。采用XPS和LRS对预处理前后CNTs管的结构与表面性质进行研究。采用XRD和H2-TPR对催化剂结构进行表征。结果表明,经浓HNO3处理的CNTs载体表面含氧官能团—COOH相对含量提高了约68%,且表面缺陷增多,有助于催化剂活性组分的沉积和分散。以此负载的Cu O-CeO_2催化剂上Cu O物种具有较好的分散性,晶粒尺寸较小,催化剂表现出强的低温氧化还原能力,且表面CO氧化活性位增多,对CO选择性氧化具有低温高活性,T50低至90℃,反应温度低于140℃保持高选择性,且CO完全转化反应温度窗口拓宽宽至30℃。  相似文献   

14.
张学云  祝琳华  司甜 《化工进展》2020,39(5):1756-1764
埃洛石纳米管(HNTs)是一类具有独特物理结构和化学性质的天然黏土化合物,本文以经过提纯和聚二烯丙基二甲基氯化铵溶液(PDDA)改性的埃洛石为载体,将预先制备的粒径可控的金溶胶负载到改性埃洛石(PHNTs)表面得到负载型的纳米金颗粒,通过调节氯金酸前体的浓度和用量,实现了对负载型纳米金尺寸的有效调控,透射电镜表征结果显示,埃洛石负载的纳米金分散性良好,平均粒径分别处于2nm以下、2~5nm和5nm以上。以环己烷的液相选择性氧化为模型反应,评价了所制备的不同尺度负载型纳米金粒子的活性和对环己醇和环己酮的选择性。结果表明:纳米金颗粒的平均粒径处于2~5nm时,表现出最好的催化活性和选择性,在170℃和2.0MPa下反应2h,环己烷的转化率可达10.29%,环己醇和环己酮的选择性达85.75%,优于该反应体系使用的工业催化剂对活性和选择性的指标要求。此外,X射线光电子能谱仪表征结果显示,当埃洛石负载的纳米金平均粒径处于2~5nm时,金元素主要以Au0 的形式存在。  相似文献   

15.
纳米金催化剂在CO低温氧化和选择性氧化中的研究进展   总被引:1,自引:0,他引:1  
鲁继青  罗孟飞  辛勤 《化工进展》2007,26(3):306-309
介绍了纳米金催化剂在CO低温氧化和丙烯直接环氧化反应中的研究进展。在CO低温氧化反应中,催化剂的活性相和载体都具有明显的尺寸效应,纳米金颗粒和载体之间的相互作用主要表现载体不仅可以改变纳米金颗粒的大小和形状,而且也影响了氧的活化,从而提高反应活性;在丙烯直接环氧化反应中,由H2和O2在金颗粒表面反应生成的过氧化物种是反应中间体;在选择性氧化和选择性加氢反应中,金催化剂表现出优良的活性和稳定性。  相似文献   

16.
The catalytic behavior of a series of VOx/α-Al2O3 catalysts for the partial oxidation of methane has been evaluated. Samples with different vanadia loading were prepared from NH4VO3 and V(AcAc)3. Characterization performed by TPR and oxygen uptake measurements indicates that different VOx species are present on the samples. The catalytic patterns indicate that each V-surface species possesses different activity and selectivity. Isolated vanadates are the most active and selective towards HCHO, while V2O5 crystallites are detrimental to the catalytic performance.  相似文献   

17.
In order to develop a catalyst with high activity and stability for catalytic wet air oxidation (CWAO) process at room temperature and atmospheric pressure, we prepared Fe2O3-CeO2-TiO2/γ-Al2O3 by consecutive impregnation, and determined its properties using BET, SEM, XRF, XPS and chemical analysis techniques. The degradation of an azo dye, methyl orange, in CWAO process with Fe2O3-CeO2-TiO2/γ-Al2O3 used as catalyst at room temperature and atmospheric pressure was also investigated, and the results show that the catalyst has an excellent catalytic activity in treating synthetic wastewater containing 500 mg/L methyl orange, and 98.09% of color and 96.08% of total organic carbon (TOC) can be removed in 2.5 h. The degradation pathway of methyl orange was analyzed by UV–vis and FT-IR spectra. The result of leaching tests shows the catalyst has an excellent stability with negligible leaching ions, and the leaching of Ce is effectively controlled by adding Ti, because Ce and Ti in the catalyst take the form of compound oxides, and the deactivation of the catalyst in successive runs is caused by the adsorption of intermediates on the surface and coverage of the active sites. The catalytic activity of the deactivated catalyst can be generally restored by rinsing it in hydrochloric acid followed by calcination.  相似文献   

18.
Nanocrystalline α-Al2O3 and Ni-modified α-Al2O3 have been prepared by sol–gel and solvothermal methods and employed as supports for Pd catalysts. Regardless of the preparation method used, NiAl2O4 spinel was formed on the Ni-modified α-Al2O3 after calcination at 1150 °C. However, an addition of NiO peaks was also observed by X-ray diffraction for the solvothermal-made Ni-modified α-Al2O3 powder. Catalytic performances of the Pd catalysts supported on these nanocrystalline α-Al2O3 and Ni-modified α-Al2O3 in selective hydrogenation of acetylene were found to be superior to those of the commercial α-Al2O3 supported one. Ethylene selectivities were improved in the order: Pd/Ni-modified α-Al2O3–sol–gel > Pd/Ni-modified α-Al2O3-solvothermal ≈ Pd/α-Al2O3–sol–gel > Pd/α-Al2O3-solvothermal  Pd/α-Al2O3-commerical. As revealed by NH3 temperature program desorption studies, incorporation of Ni atoms in α-Al2O3 resulted in a significant decrease of acid sites on the alumina supports. Moreover, XPS revealed a shift of Pd 3d binding energy for Pd catalyst supported on Ni-modified α-Al2O3–sol–gel where only NiAl2O4 was formed, suggesting that the electronic properties of Pd may be modified.  相似文献   

19.
The activity of a carbon supported PtWO3 (PtWO3/C) catalyst in the CO oxidation and CO2 reduction reactions was evaluated in sulfuric acid solution at room temperature.Cyclic voltammetry combined with on-line mass spectrometry shows that the oxidation of both saturated CO adlayer and dissolved CO on PtWO3/C material commences at rather low potentials, ca. 0.18 and 0.12 V vs. RHE, respectively. However, the low-potential process seems to involve only a minor fraction of the CO adlayer, the major part of the adsorbed CO layer being oxidised at the potentials as high as those for pure Pt catalysts—ca. 0.7 V vs. RHE. PtWO3/C material was found to reversibly de-activate upon a prolonged exposure to the CO-saturated solution due to the inhibition of the hydrogen tungsten bronze formation.The reduction of CO2 on PtWO3/C leads to the formation of an adsorbate - presumably CO - on the Pt sites of the catalyst. Although the rate of the adsorbate build-up on PtWO3/C at 0.1 V is lower than that on pure Pt/C, our results indicate that upon a prolonged exposure of the PtWO3/C electrode to a CO2-saturated solution a complete poisoning of the Pt sites with the adsorbate is likely to occur at room temperature.  相似文献   

20.
The catalytic activity of a mixed phase of copper–cobalt and copper–manganese oxides supported on magnesium fluorine or alumina has been studied in low temperature CO oxidation at 30 °C. During calcination, the oxides studied partially react to form different type spinels depending on the calcination temperature. These spinels have different effect on the catalytic activity. In low temperature CO oxidation the copper–manganese catalysts are more active than the copper–cobalt ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号