首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis, characterization, and application of silica‐supported Cu‐Au bimetallic catalysts in selective hydrogenation of cinnamaldehyde are described. The results showed that Cu‐Au/SiO2 bimetallic catalysts were superior to monometallic Cu/SiO2 and Au/SiO2 catalysts under identical conditions. Adding a small amount of gold (6Cu‐1.4Au/SiO2 catalyst) afforded eightfold higher catalytic reaction rate compared to Cu/SiO2 along with the high selectivity (53%, at 55% of conversion) toward cinnamyl alcohol. Characterization techniques such as x‐ray diffraction, H2 temperature‐programmed reduction, ultraviolet‐visible spectroscopy, transmission electron microscopy, Fourier‐transform infrared spectra of chemisorbed CO, and x‐ray photoelectron spectroscopy were employed to understand the origin of the catalytic activity. A key genesis of the high activity of the Cu‐Au/SiO2 catalyst was ascribed to the synergistic effect of Cu and Au species: the Au sites were responsible for the dissociative activation of H2 molecules, and Cu0 and Cu+ sites contributed to the adsorption‐activation of C?C and C?O bond, respectively. A combined tuning of particle dispersion and its surface electronic structure was shown as a consequence of the formation of Au‐Cu alloy nanoparticles, which led to the significantly enhanced synergy. A plausible reaction pathway was proposed based on our results and the literature. © 2014 American Institute of Chemical Engineers AIChE J, 60: 3300–3311, 2014  相似文献   

2.
The influence of the Rh loading on the surface properties and catalytic behaviour of Rh/γ-Al2O3 catalysts has been studied. The series of catalysts presents differences in metal dispersion, reducibility, surface composition and catalytic activity. All the data reported suggest that the differences in catalytic behaviour in the methylcyclohexane dehydrogenation reaction can be explained in terms of electron-deficient rhodium clusters, essentially when the metal particle size becomes smaller than 15 Å.  相似文献   

3.
A microwave‐assisted mild and ecofriendly catalytic transfer hydrogenation process was developed to reduce various α,β‐unsaturated carbonyl compounds into the corresponding saturated carbonyl compounds in the presence of silica‐supported palladium chloride as catalyst and a combination of MeOH/HCOOH/H2O (1 : 2 : 3) as hydrogen source within 22–55 minutes in moderate to excellent yields with 100% chemoselectivity.  相似文献   

4.
Magnetic γ‐Fe2O3 catalysts were prepared by microwave‐assisted coprecipitation utilizing the direct‐titrate and back‐titrate precipitation technique with different precipitants, namely, (NH4)2CO3, NaOH, Na2CO3, and NH4OH, which were evaluated in the selective catalytic reduction of NOx with NH3. The optimum γ‐Fe2O3 catalyst preparation method was direct titration with NH4OH as the precipitant, which exhibits high deNOx efficiency. This direct titration was effective to maintain the proper crystallization degree of γ‐Fe2O3, improve the pore structure, and suppress the formation of α‐Fe2O3 phase, being advantageous to get tiny and uniform discrete γ‐Fe2O3 particles with high activity in selective catalytic reduction. NH4+‐based precipitants in direct titration leads to an increase of the surface O/Fe atom ratio, and more lattice oxygen sites are exposed to the crystal surface.  相似文献   

5.
Novel polyimide‐γ‐Fe2O3 hybrid nanocomposite films (PI/γ‐Fe2O3) has been developed from the poly(amic acid) salt of oxydianiline with different weight percentages (5, 10, 15 wt %) of γ‐Fe2O3 using tetrahydrofuran (THF) and N,N‐dimethylacetamide (DMAc) as aprotic solvents. The prepared polyimide‐γ‐Fe2O3 nanocomposite films were characterized for their structure, morphology, and thermal behavior employing Fourier transform infrared spectroscopy (FTIR), scanning electron micrograph (SEM), transmission electron micrograph (TEM), X‐ray diffraction (XRD), 13C‐NMR, and thermal analysis (TGA/DSC) techniques. These studies showed the homogenous dispersion of γ‐Fe2O3 in the polyimide matrix with an increase in the thermal stability of the composite films on γ‐Fe2O3 loadings. Magnetization measurements (magnetic hysteresis traces) have shown very high values of coercive force indicating their possible use in memory devices and in other related applications. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 834–840, 2007  相似文献   

6.
A detailed structural analysis on the in situ synthesized β‐Ca3(PO4)2/α‐Fe2O3 composites is demonstrated. Compositional ratios, the influence and occupancy of iron at the β‐Ca3(PO4)2 lattice, oxidation state of iron in the composites are derived from analytical techniques involving XRD, FT‐IR, Raman, refinement of the powder X‐ray diffraction and X‐ray photoelectron spectroscopy. Iron exists in the Fe3+ state throughout the investigated systems and favors its occupancy at the Ca2+(5) site of β‐Ca3(PO4)2 until critical limit, and thereafter crystallizes as α‐Fe2O3 at ambient conditions. Fe3+ occupancy at the β‐Ca3(PO4)2 lattice yields a Ca9Fe(PO4)7 structure that is isostructural with its counterpart. A strong rise in the soft ferromagnetic behavior of β‐Ca3(PO4)2/α‐Fe2O3 composites is obvious that depends on the content of α‐Fe2O3 in the composites. Overall, the diverse level of iron inclusions at the calcium phosphate system with a Ca/P ratio of 1.5 yields a structurally stable β‐Ca3(PO4)2/α‐Fe2O3 composites with assorted compositional ratios.  相似文献   

7.
Chemoselective reduction of α,βunsaturated carbonyls to the corresponding alcohols was achieved by a catalytic transfer hydrogenation (CTH) method using cobalt(II)‐substituted hexagonal mesoporous aluminophosphate (CoHMA) molecular sieve catalyst. Further, the catalyst was found to be promising as a heterogeneous catalyst as the yield was practically unchanged after up to six cycles.  相似文献   

8.
This work reports the use of acrylated fatty acid methyl ester (AFAME) as a biomonomer for the synthesis of bio‐based hybrid magnetic particles poly(styrene‐co‐AFAME)/γ‐Fe2O3 produced by miniemulsion polymerization. Poly(styrene‐co‐AFAME)/γ‐Fe2O3 can be tailored for use in various fields by varying the content of AFAME. The strategy employed is to encapsulate superparamagnetic iron oxide nanoparticles (SPIONs) as γ‐Fe2O3 into a styrene/AFAME‐based copolymer matrix. Raman spectroscopy is employed to ensure the formation of the SPIONs (γ‐Fe2O3) obtained by a co‐precipitation technique followed by oxidation of Fe3O4. The functionalization of SPIONs with oleic acid (OA) is carried out to increase the SPIONs–monomer affinity. The presence of OA on the surface of γ‐Fe2O3 is certified by identification of main absorption bands by fourier‐transform infrared spectroscopy (FTIR). Thermal analysis (differential thermogravimetry/differential thermo analysis and differential scanning calorimetry) results of poly(styrene‐co‐AFAME)/γ‐Fe2O3 show an increase in AFAME content leading to a lower copolymer glass transition temperature (T g). Dynamic light scattering (DLS) measurements result in poly(styrene‐co‐AFAME)/γ‐Fe2O3 particles with diameter in the range of 100–150 nm. It is also observed by transmission electron microscopy (TEM) and cryo‐TEM techniques that γ‐Fe2O3 particles are successfully encapsulated into the poly(styrene‐co‐AFAME) matrix.  相似文献   

9.
The vapour-phase dehydration and dehydrogenation of isopropyl alcohol (IPA) have been carried out over pure MoO3 and Fe2O3, produced by calcination of ammonium heptamolybdate and of iron (III) nitrate respectively, as well as MoO3 mixed with 0·5 and 50 mol% Fe2O3, prepared from the same materials. All catalysts were calcined in air, in the temperature range 200–600°C for 5 h, and were characterized by thermal analysis (TG, DTA), XRD, IR and SBET. Surface areas decreased with increasing calcination temperature, and the catalytic activity of the pure oxides MoO3 and Fe2O3, as well as of MoO3–0.5 mol % Fe2O3, increased with their SBET. The activity of MoO3–50 mol % Fe2O3, which was independent of its SBET, could be attributed to the increased intensity of terminal Mo—O bonds as shown by IR spectra. The activation energies for the decomposition of IPA over catalysts calcined at 250 and 500°C are tabulated.  相似文献   

10.
Nanocrystalline α-Al2O3 and Ni-modified α-Al2O3 have been prepared by sol–gel and solvothermal methods and employed as supports for Pd catalysts. Regardless of the preparation method used, NiAl2O4 spinel was formed on the Ni-modified α-Al2O3 after calcination at 1150 °C. However, an addition of NiO peaks was also observed by X-ray diffraction for the solvothermal-made Ni-modified α-Al2O3 powder. Catalytic performances of the Pd catalysts supported on these nanocrystalline α-Al2O3 and Ni-modified α-Al2O3 in selective hydrogenation of acetylene were found to be superior to those of the commercial α-Al2O3 supported one. Ethylene selectivities were improved in the order: Pd/Ni-modified α-Al2O3–sol–gel > Pd/Ni-modified α-Al2O3-solvothermal ≈ Pd/α-Al2O3–sol–gel > Pd/α-Al2O3-solvothermal  Pd/α-Al2O3-commerical. As revealed by NH3 temperature program desorption studies, incorporation of Ni atoms in α-Al2O3 resulted in a significant decrease of acid sites on the alumina supports. Moreover, XPS revealed a shift of Pd 3d binding energy for Pd catalyst supported on Ni-modified α-Al2O3–sol–gel where only NiAl2O4 was formed, suggesting that the electronic properties of Pd may be modified.  相似文献   

11.
The hydrogenation of carboxylic acid derivatives at room temperature was investigated. With a mixed Rh/Pt oxide (Nishimura catalyst), low to medium activity was observed for various α‐amino and α‐hydroxy esters. At 100 bar hydrogen pressure and 10% catalysts loading, high yields of the desired amino alcohols and diols were obtained without racemization. The most suitable α‐substituents were NH2, NHR, and OH, whereas β‐NH2 were less effective. Usually, aromatic rings were also hydrogenated, but with the free bases of amino acids as substrates, some selectivity was observed. No reaction was found for α‐NR2, α‐OR, and unfunctionalized esters; acids and amides were also not reduced under these conditions. A working hypothesis for the mode of action of the catalyst is presented.  相似文献   

12.
An intramolecular imination/azidation sequence has been realized through the tetrakis(acetonitrile)copper(I) hexafluorophophate [Cu(CH3CN)4PF6]‐catalyzed reaction of γ,δ‐unsaturated ketone O‐benzoyl oximes with trimethylsilyl azide (TMSN3). The reaction proceeds via the copper‐mediated N O cleavage and subsequent C N forming 5‐exo cyclization. The thus formed intermediate is then azidated to afford the corresponding dihydropyrrole product. Preliminary mechanistic investigations suggest that the cyclization step does not involve a radical intermediate.

  相似文献   


13.
γ-Al2O3 and SiO2 supported Co catalysts, with varying amounts of Ru, were prepared and evaluated for Fischer–Tropsch synthesis (FTS). The composition of Ru for optimum activity was found to be support-dependent. The reducible Co3O4 was high in the region of 0–1.64 wt.% of Ru in Co/SiO2 catalysts. Co/γ-Al2O3 displayed a maximum for reducible Co species at 0.42 wt.% Ru. Segregation of Ru occurred beyond this composition decreasing the extent of reduction. Co/γ-Al2O3 catalysts showed lower activity and olefin selectivity, in spite of higher Co dispersion, than Co/SiO2 catalysts. The catalytic performance depends on the amount of reducible Co species, which again depends upon the optimum content of Ru.  相似文献   

14.
Nicotinic acetylcholine receptors (nAChRs) play an important role in many central nervous system disorders such as Alzheimer’s and Parkinson’s diseases, schizophrenia, and mood disorders. The α4β2 subtype has emerged as an important target for the early diagnosis and amelioration of Alzheimer’s disease symptoms. Herein we report a new class of α4β2 receptor ligands characterized by a basic pyrrolidine nucleus, the basicity of which was properly decreased through the insertion of a fluorine atom at the 3‐position, and a pyridine ring carrying at the 3‐position substituents known to positively affect affinity and selectivity toward the α4β2 subtype. Derivatives 3‐(((2S,4R)‐4‐fluoropyrrolidin‐2‐yl)methoxy)‐5‐(phenylethynyl)pyridine ( 11 ) and 3‐((4‐fluorophenyl)ethynyl)‐5‐(((2S,4R)‐4‐fluoropyrrolidin‐2‐yl)methoxy)pyridine ( 12 ) were found to be the most promising ligands identified in this study, showing good affinity and selectivity for the α4β2 subtype and physicochemical properties predictive of a relevant central nervous system penetration.  相似文献   

15.
Catalytic reforming of methane with carbon dioxide was studied in a fixed‐bed reactor using unpromoted and promoted Ni/γ‐Al2O3 catalysts. The effects of promoters, such as alkali metal oxide (Na2O), alkaline‐earth metal oxides (MgO, CaO) and rare‐earth metal oxides (La2O3, CeO2), on the catalytic activity and stability in terms of coking resistance and coke reactivity were systematically examined. CaO‐, La2O3‐ and CeO2‐promoted Ni/γ‐Al2O3 catalysts exhibited higher stability whereas MgO‐ and Na2O‐promoted catalysts demonstrated lower activity and significant deactivation. Metal‐oxide promoters (Na2O, MgO, La2O3, and CeO2) suppressed the carbon deposition, primarily due to the enhanced basicities of the supports and highly reactive carbon species formed during the reaction. In contrast, CaO increased the carbon deposition; however, it promoted the carbon reactivity. © 2000 Society of Chemical Industry  相似文献   

16.
A highly enantioselective Michael addition of cyclic 1,3‐dicarbonyl compounds to β,γ‐unsaturated α‐keto esters catalyzed by amino acid‐derived thiourea‐tertiary‐amine catalysts is presented. Using 5 mol% of a novel tyrosine‐derived thiourea catalyst, a series of chiral coumarin derivatives were obtained in excellent yields (up to 99%) and with up to 96% ee under very mild conditions within a short reaction time.  相似文献   

17.
Chiral bioinspired iron complexes of N4 ligands based on the ethylenediamine backbone display remarkable levels of enantioselectivity for the first time in the asymmetric epoxidation of α,β‐unsaturated ketones using hydrogen peroxide (up to 87% ee) or peracetic acid as oxidant, respectively. Notablely, isotopic labeling with H218O strongly demonstrated that there is a reversible water binding step prior to generation of the significant intermediate. Besides, the complex [L2Fe(III)2(μ‐O)(μ‐CH3CO2)]3+ usually derived from the decay of the LFe(IV)O species or thermodynamic sinks for a number of iron complexes was identified by HR‐MS. In addition, the possible mechanisms were proposed and LFe(V)O species may be the main active intermediate in the catalytic system.  相似文献   

18.
A series of γ‐Al2O3‐supported nickel‐based catalysts were evaluated in continuous hydrogenation of toluene. Sr‐ and poly(ethylene glycol) 800 (PEG800)‐modified Ni/γ‐Al2O3 catalysts provided the best activity with high conversion of toluene and selectivity for methylcyclohexane which was ascribed to the addition of Sr and PEG800 during the preparation process, resulting in smaller and highly dispersed Ni species on the surface and in the pores of γ‐Al2O3. Furthermore, the formation of SrCO3 and NiAl2O4 is believed to be advantageous for the dispersion and stabilization of the active Ni species, accounting for its good stability.  相似文献   

19.
In this work, the composite catalysts, SO42/ZrO2/γ‐Al2O3 (SZA), with different ZrO2 and γ‐Al2O3 mass ratios were prepared and used for the first time for the carbon dioxide (CO2)‐loaded monoethanolamine (MEA) solvent regeneration process to reduce the heat duty. The regeneration characteristics with five catalysts (three SZA catalysts and two parent catalysts) of a 5 M MEA solution with an initial CO2 loading of 0.5 mol CO2/mol amine at 98°C were investigated in terms of CO2 desorption performance and compared with those of a blank test. All the catalysts were characterized using X‐ray diffraction, Fourier transform infrared spectroscopy, N2 adsorption–desorption experiment, ammonia temperature programmed desorption, and pyridine‐adsorption infrared spectroscopy. The results indicate that the SZA catalysts exhibited superior catalytic activity to the parent catalysts. A possible catalytic mechanism for the CO2 desorption process over SZA catalyst was proposed. The results reveal that SZA1/1, which possesses the highest joint value of Brφnsted acid sites (BASs) and mesopore surface area (MSA), presented the highest catalytic performance, decreasing the heat duty by 36.9% as compared to the catalyst‐free run. The SZA1/1 catalyst shows the best catalytic performance as compared with the reported catalyst for this purpose. Moreover, the SZA catalyst has advantages of low cost, good cyclic stability, easy regeneration and has no effect on the CO2 absorption performance of MEA. © 2018 American Institute of Chemical Engineers AIChE J, 64: 3988–4001, 2018  相似文献   

20.
Autothermal reforming (ATR) of methane was carried out over nanocrystalline Al2O3‐supported Ni catalysts with various Ni loadings. Mesoporous nanocrystalline γ‐Al2O3 powder with high specific surface area was prepared by the sol‐gel method and employed as support for the nickel catalysts. The prepared samples were characterized by X‐ray diffraction, Brunauer‐Emmett‐Teller, temperature‐programmed reduction, temperature‐programmed hydrogenation, and scanning electron microscopy techniques. It is demonstrated that the methane conversion increased with increasing in Ni content and that the catalyst with 25 wt % Ni exhibited the highest activity and a stable catalytic performance in the ATR process, with a low degree of carbon formation. Furthermore, the effects of the reaction temperature, the calcination temperature, the steam/CH4 and O2/CH4 ratios, and the gas hourly space velocity on the catalytic performance of the 25 % Ni/Al2O3 catalyst were investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号