共查询到19条相似文献,搜索用时 62 毫秒
1.
神经网络是对人脑神经系统的数学模拟,其目的是学习和模仿人脑的信息处理方式。文章介绍了神经网络的原理和模型、RBF神经网络的学习过程以及采用RBF神经网络进行高压断路器故障诊断的训练过程。 相似文献
2.
神经网络是对人脑神经系统的数学模拟,其目的是学习和模仿人脑的信息处理方式。文章介绍了神经网络的原理和模型、RBF神经网络的学习过程以及采用RBF神经网络进行高压断路器故障诊断的训练过程。 相似文献
3.
4.
提出一种基于免疫算法的改进学习算法(IRBY)。该算法将输入数据作为抗原,网络的隐层中心点作为抗体,运用免疫算法得到多样性的抗体记忆集合即为隐层网络的中心点,避免网络隐层中心点难求的问题.然后采用梯度下降法确定权值,用训练好的网络进行高压断路器机械故障诊断。仿真结果表明,该方法对高压断路器的机械振动信号的分析,有很好的应用价值。 相似文献
5.
6.
7.
通过对某钢厂冷轧电气传动系统分析,合理选取检测信号,构建了基于组态的实时在线监测系统,实现实时数据显示、报警、样本数据的存储、数据采集、参数设定等功能。利用MATLAB的Simulink工具构建了冷轧传动中的三相异步电动机故障诊断仿真系统。将RBF神经网络技术应用于冷轧电气传动系统的故障诊断,设计了基于RBF网络的三相异步电动机故障诊断系统。通过对训练好的网络进行验证,证明所设计的诊断方法能够对传动系统中的电动机故障进行很好的预测和判断,具有良好的实际应用前景。 相似文献
8.
基于神经网络的故障诊断应用研究 总被引:4,自引:0,他引:4
文中根据神经网络的相关原理,运用神经网络领域的相关知识,对于工业生产中经常出现的设备故障,提出了一种基于RBF神经网络的诊断方法,并详细讨论了RBF神经网络的结构、训练算法及用于设备故障诊断的步骤,最后以某系统的故障诊断为例,证明了此方法的优越性。 相似文献
9.
针对传统断路器电流保护方法存在受系统运行方式影响、整定困难、智能化低等问题,提出了基于RBF的断路器电流自适应保护算法,并给出了算法的模型;该算法融合了RBF神经网络的故障检测和电流自适应保护;首先通过RBF网络检测负载线路的电流故障,然后用电流自适应算法进行保护;在对神经网络进行训练时,利用PSO算法对RBF神经网络的参数进行优化以此来提高网络的泛化能力和学习能力;然后采用优化后的PSO-RBF神经网络对电流故障进行诊断;实验表明,该算法较大地提高了断路器智能化管理水平。 相似文献
10.
RBF神经网络在水轮发电机故障诊断中的应用 总被引:2,自引:0,他引:2
研究发轮电机故障准确诊断对水电站正常运行有着重要意义.由于水轮发电机是将水动能转换为电能,结构复杂,传统故障诊断方法难以解决水轮发电机的高维、非线性和不确定输出等问题,故障诊断准确率低,不利于实时诊断.为了实时进行发电机故障诊断,保证系统安全性能,提出一种改进的神经网络故障模式分类算法.首先采用粒子群优化算法对基本RBF神经网络进行优化和改正,提高网络学习性能,然后用改进算法对水轮发电机故障进行故障诊断.对水轮电机振动数据进行测试实验,结果表明算法提高了水轮发电机故障诊断速度和准确率,结构简单,可以为水轮发电机故障实时识别提供科学依据. 相似文献
11.
非平稳工况下的齿轮故障检测是一项非常困难的工作,由于齿轮振动信号的复杂性,导致故障特征提取和故障诊断困难.针对这些问题,基于径向基(radial basis function, RBF)神经网络,提出一种在变速条件下齿轮的故障诊断方法 CIHDRFD.首先利用自适应白噪声的完整集成经验模态分解(complete ensemble empirical mode decomposition with adaptive noise, CEEMDAN),将原始振动信号分解为多个固有的模态函数(intrinsic mode function, IMF),并通过计算其信息熵(information entropy, IE)筛选出IE最小的4个IMF作为特征IMF;然后利用希尔伯特变换(hilbert transform, HT)处理特征IMF并求出Hilbert包络谱,利用Hilbert包络谱构建故障特征向量;最后利用改进的双RBF神经网络进行故障检测.通过搭建齿轮故障检测平台验证CIHDRFD方法的有效性,实验结果表明, CIHDRFD方法适用于齿轮故障诊断,在速度波动为3%的情况下,诊断准确率... 相似文献
12.
设计了基于RBF神经网络的故障诊断专家系统,克服了在知识获取和表达上的薄弱环节,只需要领域专家解决问题的实例或范例来训练神经网络,使其在同样输入的情况下神经网络能够得到与专家给出的解答尽可能相同的输出。将测试到的结果进行分析,从结果中可以得知此系统运行状态,断路器是否出现故障及其故障类型,并根据其产生的故障原理,针对出现的问题进行相应的操作。 相似文献
13.
王雅芳 《自动化与仪器仪表》2007,(6):77-80
介绍BP神经网络结构和学习方法,针对误差反向传播神经网络模型学习收敛速度慢、容易陷入局部极小点等缺点,本文对BP网络模型进行了改进。对原始数据采用非线性的归一化函数,提出一种更加有效的学习率改进算法,提高了网络的收敛速度,采用了一种新的权值及阈值初始化方法,以避免训练时误差陷入局部极小解,并对改进BP算法与传统的BP算法进行比较,验证了该算法的优越性。 相似文献
14.
可拓神经网络是一类新的神经网络,它结合了可拓学理论和人工神经网络技术。可拓神经网络已经在模式识别、故障诊断、分类聚类等领域有了成功的应用。针对变压器故障诊断的特点,提出一种基于可拓神经网络的电力变压器故障诊断方法。介绍了可拓神经网络;构造了基于可拓神经网络的故障诊断模型和算法设计,并将其应用到电力变压器的诊断识别;通过仿真实验验证了该方法简单易行、训练误差小、收敛时间快等优点。该方法具有一定的应用及推广能力。 相似文献
15.
基于RBF的传感器在线故障诊断和信号恢复 总被引:4,自引:0,他引:4
介绍利用径向基神经网络构造了一种在线故障诊断及信号恢复方法,给出了网络的连接结构和学习算法。采用RBF神经网络进行传感器在线故障诊断和信号恢复,其仿真结果表明,该方法具有收敛速度快、信号恢复准确度高、泛化能力强的特点,且可以诊断多种复杂工作系统的传感器在线故障信号,同时进行信号的恢复。实现传感器状态监测、故障诊断、分离和信号恢复。 相似文献
16.
17.
针对瓦斯传感器故障诊断速度慢、诊断精度不高的问题,以常见的冲击型、漂移型、偏置型和周期型传感器输出故障为研究对象,提出了一种基于减聚类( SCM)与粒子群( PSO)算法优化的RBF神经网络进行模式分类与辨识的瓦斯传感器故障诊断方法。首先,利用三层小波包分解得到各个节点的分解系数,采用一定的削减算法使故障的瞬态信号特征得到加强,获取最优的特征能量谱。再利用SCM ̄PSO算法优化RBF神经网络,使粒子的搜索速度更快,更有利于发现全局最优解。最后通过实验对比分析,该方法具有训练速度快、分类精度高的特点,辨识正确率在95%以上,能够显著提高故障诊断的速度和准确性。 相似文献
18.
三相异步电机因其结构简单、维护方便、可靠性高等特点被广泛应用到工业生产中,所以保证三相异步电机在生产环境中的安全与稳定运行具有十分重要的意义;传统的三相异步电机故障诊断均采用特征电流法,但在实际应用中由于特征谐波难以分离,从而导致无法判断;采用先进的长短期记忆(LSTM)神经网络以及最新提出的RAdam优化器,在电机正常运转时对其运行特性进行实时采集,通过双峰谱线插值法以及滑窗法提取谐波之后,对电机输出结果进行时序预测和比对;最后以工程中实际电机数据为例,通过测量其故障运行实际数据,验证了该算法的可行性;经实验测试可得,相比于传统神经网络,该算法具有更好的故障检测能力。 相似文献
19.
为更好解决抽油机井示功图模式诊断问题,依据示功图绘制原理,将示功图识别看作动态系统连续曲线(位移-时间曲线和载荷-时间曲线)的模式识别问题。利用过程神经元能同时处理时、空二维信息,可自动抽取时变函数样本的过程模式特征,在机制上对时变信号的分类问题具有较好的适应性,提出一种基于对传过程神经元网络诊断模型及其学习算法。以油井实测数据对模型进行训练和故障识别,取得了较好的应用效果。 相似文献