首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A benchmark three-dimensional (3D) exact piezoelasticity solution is presented for free vibration and steady state forced response of simply supported smart cross-ply circular cylindrical shells of revolutions and panels integrated with surface-bonded or embedded monolithic piezoelectric or piezoelectric fiber reinforced composite (PFRC) layers. The effective properties of PFRC laminas for the 3D case are obtained based on a fully coupled iso-field model. The governing partial differential equations are reduced to ordinary differential equations in the thickness coordinate by expanding all entities for each layer in double Fourier series in span coordinates, which identically satisfy the boundary conditions at the simply-supported ends. These equations with variable coefficients are solved using the modified Frobenius method, wherein the solution is constructed as a product of an exponential function and a power series. The unknown constants of the general solution are finally obtained by employing the transfer matrix method across the layers. Results for natural frequencies and the forced response are presented for single layer piezoelectric and multilayered hybrid composite and sandwich shells of revolution and shell panels integrated with monolithic piezoelectric and PFRC actuator/sensor layers. The present benchmark solution would help assess 2D shell theories for dynamic response of hybrid cylindrical shells.  相似文献   

2.
Admissible boundary conditions are derived for an arbitrarily laminated internally pressurized cylindrical shell of finite length, under the framework of Donnell’s, Love–Timoshenko’s and Sanders’ kinematic relations, and the CLT (based on Love’s first approximation theory). Closed-form solutions for the same cylindrical shell are presented for Love–Timoshenko’s theory, with two sets of asymmetrically placed prescribed boundary conditions. As the first example, internally pressurized thin hybrid general (asymmetric) four-layer cylindrical shells with RS2-C4 boundary conditions, made of glass and carbon fiber reinforced composite layers, are numerically investigated. In the second example, the numerical results for two-layer asymmetrically laminated cylindrical shells, with RS2-SS1 boundary conditions, are compared with those, computed using triangular finite elements based on the layer-wise constant shear-angle theory (LCST), in order to evaluate the limit of applicability of the CLT.  相似文献   

3.
Dynamic response of fiber metal laminate cylindrical shells subjected to initial combined axial load and internal pressure were studied in this paper. First order shear deformation theory (FSDT) was utilized in the shell’s equilibrium equations and strain–displacement relations were based on Love’s first approximation theory. Equilibrium equations for buckling, free and forced vibration problems of the shell were solved using Galerkin method. The influences of FML parameters such as material properties lay up, Metal Volume Fraction (MVF), fiber orientation and initial stresses on dynamic response were investigated. The results were indicated that the FML lay up, has a significant effect on natural frequencies as well as transient dynamic response with respect to various values of MVF as well as pre-stress.  相似文献   

4.
The aim of present study is to investigate the dynamic instability of exponentially graded (EG) sandwich cylindrical shells under static and time dependent periodic axial loadings using the shear deformation theory (SDT). The modified Donnell-type dynamic instability equations of EG sandwich cylindrical shells based on the SDT are deduced. Then are reduced to Mathieu-Hill equation and by solving the expressions for the boundaries of instability regions of EG sandwich cylindrical shells are obtained. The similar expressions for EG single-layer shell, ceramic-rich shell and metal coated sandwich cylindrical shell on the basis of SDT and classical shell theory (CST) are obtained in a special case. The numerical illustrations concern the influences of compositional profiles of coating layers, shear stresses and geometrical parameters of sandwich cylindrical shells on the boundaries of instability regions. As a check on the accuracy of the present study, the values of the lower and upper boundaries of instability regions are compared with those in the literature.  相似文献   

5.
A piezoelectric laminated cylindrical shell with shear rotations effect under the electromechanical loads and four sides simply supported boundary condition was studied by using the two-dimensional generalized differential quadrature (GDQ) computational method. The typical hybrid composite shells with 3-layered cross-ply [90°/0°/90°] graphite–epoxy laminate and bounded PVDF layers are considered under the sinusoidal pressure loads and electric potentials on the shell. The governing partial differential equation with first-order shear deformation theory in terms of mid-surface displacements and shear rotations can be expressed in series equations by the GDQ formulation. Thus we obtain the GDQ numerical solutions of non-dimensional displacement and stresses at center position of laminated piezoelectric shells. Displacement is generally affected by the thickness of laminated piezoelectric shells under the action of mechanical load. Stresses are generally affected by the thickness and the length of laminated piezoelectric shells under the actions of mechanical load and electric potential.  相似文献   

6.
采用半解析的方法,建立离散加筋圆柱壳模型,基于复合材料多层扁壳大挠度的剪切变形理论,利用Hamilton原理导出环向加筋复合材料圆柱壳的非线性运动控制方程;用Galerkin方法对空间变量进行离散,将位移和载荷展开为双级数,得到有关时间的常微分方程组,最后采用R-Kutta方法数值求解.通过算例,讨论了加筋肋骨几何参数、铺层角度、辅层方式、铺层层数等因素对动力响应的影响。  相似文献   

7.
《Composites Part B》2001,32(3):237-247
The bending, buckling and free vibration problems of non-homogeneous composite laminated cylindrical shells are considered. Hamilton–Reissner's mixed variational principle is used to deduce a consistent first-order theory of composite laminated cylindrical shells with non-homogeneous elastic properties. The governing equations with their required boundary conditions are derived without introducing any shear correction factors. Numerical results for the transverse deflections, stresses, natural frequencies and critical buckling loads are presented to show the advantages of this theory. The influences of the non-homogeneity and thickness ratio on the shell structural response are investigated. The study concludes that the inclusion of the non-homogeneity effect is required, even if it is weak, for predicting the actual structural response of the shells.  相似文献   

8.
A postbuckling analysis is presented for a functionally graded cylindrical shell with piezoelectric actuators subjected to lateral or hydrostatic pressure combined with electric loads in thermal environments. Heat conduction and temperature-dependent material properties are both taken into account. The temperature field considered is assumed to be a uniform distribution over the shell surface and varied in the thickness direction and the electric field considered only has non-zero-valued component EZ. The material properties of functionally graded materials (FGMs) are assumed to be graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents, and the material properties of both FGM and piezoelectric layers are assumed to be temperature-dependent. The governing equations are based on a higher order shear deformation theory with a von Kármán–Donnell-type of kinematic nonlinearity. A boundary layer theory of shell buckling is extended to the case of FGM hybrid laminated cylindrical shells of finite length. A singular perturbation technique is employed to determine the buckling pressure and postbuckling equilibrium paths. The numerical illustrations concern the postbuckling behavior of pressure-loaded, perfect and imperfect, FGM cylindrical shells with fully covered piezoelectric actuators under different sets of thermal and electric loading conditions. The results reveal that temperature dependency, temperature change and volume fraction distribution have a significant effect on the buckling pressure and postbuckling behavior of FGM hybrid cylindrical shells. In contrast, the control voltage only has a very small effect on the buckling pressure and postbuckling behavior of FGM hybrid cylindrical shells.  相似文献   

9.
研究了叠层复合材料圆柱壳的细-宏观阻尼特性。基于Reissner-Naghdi薄壳理论,给出了圆柱壳的振动微分方程,在分量变量的过程中,采用Haar小波级数表示轴向振型,Fourier级数表示环向振型,通过边界条件求解积分过程中出现的未知系数,进而得到用于分析圆柱壳自由振动特性的特征方程;基于单层混杂材料的细观力学阻尼计算方法和多胞模型,分别获得单层复合材料的等效阻尼特性和等效弹性特性,利用复模量法对复合材料圆柱壳的阻尼特性进行预测。通过与其他文献中阻尼预测的结果进行对比,验证了该研究所采用方法的有效性;进一步针对四种典型的边界条件,即固支-固支(C-C)、固支-简支(C-S)、简支-简支(S-S)、固支-自由(C-F)等边界,从细-宏观层面分析了纤维含量、环向波数、铺层方式和几何参数等因素对复合材料圆柱壳阻尼特性的影响规律。  相似文献   

10.
Abstract

The paper deals with the nonlinear buckling analysis of imperfect cylindrical shells made of porous metal foam subjected to axial compression. For the metal foam shells, porosities are dispersed by uniform, symmetric, and asymmetric distributions in the thickness direction. Using Donnell shell theory and von-Karman nonlinear kinematics, nonlinear equilibrium equations are derived. The critical buckling load and buckling equilibrium curves for both perfect and imperfect shells are solved by using the Galerkin's procedure. A comprehensive investigation into the influence of porosity coefficient, imperfections, porosity distribution, and geometry on the buckling behaviors of the cylindrical shell is performed.  相似文献   

11.
A generalized mixed theory for bending analysis of axisymmetric shear deformable laminated circular cylindrical shells is presented. The classical, first-order and higher-order shell theories have been used in the analysis. The Maupertuis–Lagrange (M–L) mixed variational formula is utilized to formulate the governing equations of circular cylindrical shells laminated by orthotropic layers. Analytical solutions are presented for symmetric and antisymmetric laminated circular cylindrical shells under sinusoidal loads and subjected to arbitrary boundary conditions. Numerical results of the higher-order theory for deflections and stresses of cross-ply laminated circular cylindrical shells are compared with those obtained by means of the classical and first-order shell theories. The effects, due to shear deformation, lamination schemes, loadings ratio, boundary conditions and orthotropy ratio on the deflections and stresses are investigated.  相似文献   

12.
Buckling and postbuckling behavior are presented for fiber reinforced composite (FRC) laminated cylindrical shells subjected to axial compression or a uniform external pressure in thermal environments. Two kinds of fiber reinforced composite laminated shells, namely, uniformly distributed (UD) and functionally graded (FG) reinforcements, are considered. The governing equations are based on a higher order shear deformation shell theory with von Kármán-type of kinematic non-linearity and including the extension-twist, extension-flexural and flexural-twist couplings. The thermal effects are also included, and the material properties of FRC laminated cylindrical shells are estimated through a micromechanical model and are assumed to be temperature dependent. The non-linear prebuckling deformations and the initial geometric imperfections of the shell are both taken into account. A singular perturbation technique is employed to determine the buckling loads and postbuckling equilibrium paths of FRC laminated cylindrical shells.  相似文献   

13.
This article researches nonlinear response of imperfect eccentrically stiffened symmetric FGM thin circular cylindrical shells with ceramic-metal-ceramic layers, which are symmetric through the middle surface by Sigmoid-law distribution (S-FGM) and have stiffeners surrounded on elastic foundations under uniform radial load. The Donnell classical shell theory, stress function, and Galerkin method are used for investigation of the nonlinear stability of the S-FGM shell. The obtained results show the effects of the stiffeners, elastic foundations, mechanical load, and material parameters on the nonlinear buckling response of symmetric S-FGM circular cylindrical shells.  相似文献   

14.
《Composites Part B》2007,38(2):159-171
The viscoelastic damping model of the cylindrical hybrid panels with co-cured, free and constrained layers has been developed and investigated by using the refined finite element method based on the layerwise shell theory. The transverse shear and normal strains and the curved geometry are exactly taken into account in the present layerwise shell model, which can depict the zig-zag in-plane and out-of-plane displacements. The damped natural frequencies, modal loss factors and frequency response functions of cylindrical viscoelastic hybrid panels are compared with those of the base composite panel without a viscoelastic layer. The difference in the free vibration and damping of the thin and thick composite laminates and the viscoelastic sandwiched beam between full and partial layerwise theories is verified by comparison with the published results. Various damping characteristics of cylindrical hybrid panels with free viscoelastic layer, constrained layer damping, and co-cured sandwich laminates are investigated. Present results show that the full layerwise damping model accurately predicted the vibration and damping of the cylindrical hybrid panels with viscoelastic layers.  相似文献   

15.
Accurate zigzag theory is presented for static and free vibration analysis of multilayered functionally graded material (FGM) cylindrical shells and rectangular plates by approximating inplane displacements as a combination of linear layerwise and cubic global terms. Governing equations of motion are derived using Hamilton’s principle. The theory yields accurate results for displacements, stresses and natural frequencies in simply-supported functionally graded multilayered cylindrical shell panels and rectangular plates. Effect of changing the volume fraction ratio, aspect ratio and thickness of FGM layer between two homogeneous layers are investigated for a number of multilayered shell and plate laminates.  相似文献   

16.
 Three-dimensional (3-D) elasticity solutions for the free vibration analysis of laminated circular conical shells are presented by means of an asymptotic approach. The formulation begins with the 3-D equations of motion in circular conical coordinates. After proper nondimensionalization, asymptotic expansion and successive integration, we obtain recursive sets of differential equations at various levels. The method of multiple time scales is used to eliminate the secular terms and make the asymptotic expansion feasible. The method of differential quadrature (DQ) is adopted for solving the problems of various orders. The present asymptotic formulation is applicable to the analysis of laminated cylindrical shells by vanishing the semivertex angle (α). The natural frequencies, modal stresses of cross-ply cylindrical and conical shells with simply supported – simply supported (S-S) boundary conditions are studied to demonstrate the performance of the present asymptotic theory. It is shown that the asymptotic DQ solutions of the present study converge rapidly. The present convergent results are in good agreement with the accurate solutions obtained from the approximate 2-D shell theories in the cases of thin shells. Furthermore, these present results may serve as the benchmark solutions for assessment of various 2-D shell theories in the cases of moderatively thick shells. Received 11 August 1999  相似文献   

17.
In this paper, the linearly conforming radial point interpolation method is extended for geometric nonlinear analysis of plates and cylindrical shells. The Sander’s nonlinear shell theory is utilized and the arc-length technique is implemented in conjunction with the modified Newton–Raphson method to solve the nonlinear equilibrium equations. The radial and polynomial basis functions are employed to construct the shape functions with Delta function property using a set of arbitrarily distributed nodes in local support domains. Besides the conventional nodal integration, a stabilized conforming nodal integration is applied to restore the conformability and to improve the accuracy of solutions. Small rotations and deformations, as well as finite strains, are assumed for the present formulation. Comparisons of present solutions are made with the results reported in the literature and good agreements are obtained. The numerical examples have demonstrated that the present approach, combined with arc-length method, is quite effective in tracing the load-deflection paths of snap-through and snap-back phenomena in shell problems.  相似文献   

18.
《Composites Part B》2000,31(4):345-354
Analytical solutions for the vibrations of thick symmetric angle-ply laminated composite cylindrical shells are established using the first-order shear deformation theory. The complex method is developed to deal with the partial differential governing equations of thick symmetric angle-ply laminated composite cylindrical shells. Numerical results are provided for comparison, and coincide with existing results in the literature. The frequency characteristics for thick symmetric angle-ply laminated composite cylindrical shells with different H/R and L/R ratios are studied in comparison with those of symmetric cross-ply laminates. Also, the influence of lamination angle and number of lamination layers on frequency is investigated in details.  相似文献   

19.
In this paper, a coupled multi-field mechanics framework is presented for analyzing the non-linear response of shallow doubly curved adaptive laminated piezoelectric shells undergoing large displacements and rotations in thermal environments. The mechanics incorporate coupling between mechanical, electric and thermal fields and encompass geometric non-linearity effects due to large displacements and rotations. The governing equations are formulated explicitly in orthogonal curvilinear coordinates and are combined with the kinematic assumptions of a mixed-field shear-layerwise shell laminate theory. A finite element methodology and an eight-node coupled non-linear shell element are developed. The discrete coupled non-linear equations of motion are linearized and solved, using an extended cylindrical arc-length method together with a Newton–Raphson technique, to enable robust numerical predictions of non-linear active shells transitioning between multiple stable equilibrium paths. Validation and evaluation cases on laminated cylindrical strips and cylindrical panels demonstrate the accuracy of the method and its robust capability to predict non-linear response under thermal and piezoelectric actuator loads. Moreover, the results illustrate the capability of the method to model piezoelectric shells undergoing large shape changes by actively jumping between stable equilibrium states and quantify the strong relationship between shell curvature, applied electric potential, applied temperature differential and induced shape change. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
In this study, based on the three-dimensional theory of elasticity, static and free vibration characteristics of continuously graded fiber-reinforced (CGFR) cylindrical shells are considered by making use of a generalized power-law distribution. In the present formulation, the cylindrical shell is assumed to be made of an orthotropic material. The CGFR cylindrical shells have a smooth variation of matrix volume fraction in the radial direction. Symmetric and asymmetric volume fraction profiles are presented in this paper. Suitable displacement functions that identically satisfy the boundary conditions at the simply supported edges are used to reduce the equilibrium equations to a set of coupled ordinary differential equations with variable coefficients, which can be solved by a generalized differential quadrature method. The fast rate of convergence of the method is demonstrated, and comparison studies are carried out to establish its very high accuracy and versatility. The main contribution of this work is to illustrate useful results for a cylindrical shell continuously graded fiber reinforced in the radial direction. Finally, these results are compared with a similar discrete laminated composite cylindrical shell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号