共查询到20条相似文献,搜索用时 15 毫秒
1.
Ambrogio MW Thomas CR Zhao YL Zink JI Stoddart JF 《Accounts of chemical research》2011,44(10):903-913
Medicine can benefit significantly from advances in nanotechnology because nanoscale assemblies promise to improve on previously established therapeutic and diagnostic regimes. Over the past decade, the use of delivery platforms has attracted attention as researchers shift their focus toward new ways to deliver therapeutic and/or diagnostic agents and away from the development of new drug candidates. Metaphorically, the use of delivery platforms in medicine can be viewed as the "bow-and-arrow" approach, where the drugs are the arrows and the delivery vehicles are the bows. Even if one possesses the best arrows that money can buy, they will not be useful if one does not have the appropriate bow to deliver the arrows to their intended location. Currently, many strategies exist for the delivery of bioactive agents within living tissue. Polymers, dendrimers, micelles, vesicles, and nanoparticles have all been investigated for their use as possible delivery vehicles. With the growth of nanomedicine, one can envisage the possibility of fabricating a theranostic vector that could release powerful therapeutics and diagnostic markers simultaneously and selectively to diseased tissue. In our design of more robust theranostic delivery systems, we have focused our attention on using mesoporous silica nanoparticles (SNPs). The payload "cargo" molecules can be stored within this robust domain, which is stable to a wide range of chemical conditions. This stability allows SNPs to be functionalized with stimulus-responsive mechanically interlocked molecules (MIMs) in the shape of bistable rotaxanes and psuedorotaxanes to yield mechanized silica nanoparticles (MSNPs). In this Account, we chronicle the evolution of various MSNPs, which came about as a result of our decade-long collaboration, and discuss advances in the synthesis of novel hybrid SNPs and the various MIMs which have been attached to their surfaces. These MIMs can be designed in such a way that they either change shape or shed off some of their parts in response to a specific stimulus, such as changes in redox potential, alterations in pH, irradiation with light, or the application of an oscillating magnetic field, allowing a theranostic payload to be released from the nanopores to a precise location at the appropiate time. We have also shown that these integrated systems can operate not only within cells, but also in live animals in response to pre-existing biological triggers. Recognizing that the theranostics of the future could offer a fresh approach to the treatment of degenerative diseases including cancer, we aim to start moving out of the chemical domain and into the biological one. Some MSNPs are already being tested in biological systems. 相似文献
2.
Gold nanocages: from synthesis to theranostic applications 总被引:1,自引:0,他引:1
Xia Y Li W Cobley CM Chen J Xia X Zhang Q Yang M Cho EC Brown PK 《Accounts of chemical research》2011,44(10):914-924
Gold nanostructures have garnered considerable attention in recent years for their potential to facilitate both the diagnosis and treatment of cancer through their advantageous chemical and physical properties. The key feature of Au nanostructures for enabling this diverse array of biomedical applications is their attractive optical properties, specifically the scattering and absorption of light at resonant wavelengths due to the excitation of plasmon oscillations. This phenomenon is commonly known as localized surface plasmon resonance (LSPR) and is the source of the ruby red color of conventional Au colloids. The resonant wavelength depends on the size, shape, and geometry of the nanostructures, providing a set of knobs to manipulate the optical properties as needed. For in vivo applications, especially when optical excitation or transduction is involved, the LSPR peaks of the Au nanostructures have to be tuned to the transparent window of soft tissues in the near-infrared (NIR) region (from 700 to 900 nm) to maximize the penetration depth. Gold nanocages represent one class of nanostructures with tunable LSPR peaks in the NIR region. These versatile nanostructures, characterized by hollow interiors and ultrathin, porous walls, can be prepared in relatively large quantities using a remarkably simple procedure based on the galvanic replacement between Ag nanocubes and aqueous chloroauric acid. The LSPR peaks of Au nanocages can be readily and precisely tuned to any wavelength in the NIR region by controlling their size, wall thickness, or both. Other significant features of Au nanocages that make them particularly intriguing materials for biomedical applications include their compact sizes, large absorption cross sections (almost five orders of magnitude greater than those of conventional organic dyes), and their bio-inertness, as well as a robust and straightforward procedure for surface modification based on Au-thiolate chemistry. In this Account, we present some of the most recent advances in the use of Au nanocages for a broad range of theranostic applications. First, we describe their use as tracers for tracking by multiphoton luminescence. Gold nanocages can also serve as contrast agents for photoacoustic (PA) and mutimodal (PA/fluorescence) imaging. In addition, these nanostructures can be used as photothermal agents for the selective destruction of cancerous or diseased tissue. Finally, Au nanocages can serve as drug delivery vehicles for controlled and localized release in response to external stimuli such as NIR radiation or high-intensity focused ultrasound (HIFU). 相似文献
3.
Guang-Wei Zhang Long Wang Ling-Hai Xie Jin-Yi Lin Wei Huang 《International journal of molecular sciences》2013,14(11):22368-22379
Supramolecular luminescence stems from non-covalent exciton behaviors of active π-segments in supramolecular entities or aggregates via intermolecular forces. Herein, a π-conjugated oligofluorenol, containing self-complementary double hydrogen bonds, was synthesized using Suzuki coupling as a supramolecular semiconductor. Terfluorenol-based random supramolecular polymers were confirmed via concentration-dependent nuclear magnetic resonance (NMR) and dynamic light scattering (DLS). The photoluminescent spectra of the TFOH-1 solution exhibit a green emission band (g-band) at approximately ~520 nm with reversible features, as confirmed through titration experiments. Supramolecular luminescence of TFOH-1 thin films serves as robust evidence for the aggregates of g-band. Our results suggest that the presence of polyfluorene ketone defects is a sufficient condition, rather than a sufficient-necessary condition for the g-band. Supramolecular electroluminescence will push organic devices into the fields of supramolecular optoelectronics, spintronics, and mechatronics. 相似文献
4.
5.
Macrocyclic ligands typically show high selectivity for specific metal ions and small molecules, and these features make such molecules attractive candidates for nanoscale chemical sensing applications. Crown ethers are macrocyclic structures with polyether linkages where the oxygen donors are often separated by an ethylene unit (-O-CH(2)-CH(2)-O-). Because the oxygen lone pairs in crown-type macrocycles are directed inward, the preorganized macrocyclic cavity tends to form complexes where metals coordinate inside the cavity (endo-coordination). However, sulfur-containing macrocycles often demonstrate metal coordination outside of the cavity (exo-coordination). This coordination behavior results from the different torsion arrangements adopted by the X-CH(2)-CH(2)-X atom sequence (X = O, gauche; X = S, anti) in these molecules. Exo-coordination is synthetically attractive because it would provide a means of connecting macrocyclic building blocks in diverse arrangements. In fact, exo-coordination could allow the construction of more elaborate network assemblies than are possible using conventional endocyclic coordination (which gives metal-in-cavity products). Exo-coordination can also serve as a tool for crystal engineering through the use of diverse controlling factors. Although challenges remain in the development of exo-coordination-based synthetic approaches and, in particular, for the architectural control of supramolecular coordination platforms, we have established several strategies for the rational synthesis of new metallosupramolecules. In this Account, we describe our recent studies of the assembly of metallosupramolecules and coordination polymers based on sulfur-containing macrocycles that employ simple and versatile exo-coordination procedures. Initially, we focus on the unusual topological products such as sandwich (1:2, metal-to-ligand), club sandwich (2:3), and cyclic oligomeric complexes as discrete network systems. The primary structures we achieve in these networked macrocycles are one to three dimensional coordination polymers based on homo- and heteronuclear metal systems. Using crystal engineering methods, we have also investigated variation in the donors, interdonor distances, ligand isomer structures, and the effect of counter anions on the chemical and physical properties of the products. Understanding the relationship between structure and function in these exo-coordination products is an important step in the design of these new supramolecules for practical applications. We investigated the photophysical properties of the exocyclic complexes and a chromogenic macrocycle, which exhibited cation-selective and anion-controlled color change depending on an exo- or endo- ligand binding mode. Overall, we suggest that the exocyclic coordination behavior provides a versatile strategy for the preparation of new molecular networks and materials. 相似文献
6.
7.
MacGillivray LR Papaefstathiou GS Friscić T Hamilton TD Bucar DK Chu Q Varshney DB Georgiev IG 《Accounts of chemical research》2008,41(2):280-291
We describe how reactivity can be controlled in the solid state using molecules and self-assembled metal-organic complexes as templates. Being able to control reactivity in the solid state bears relevance to synthetic chemistry and materials science. The former offers a promise to synthesize molecules that may be impossible to realize from the liquid phase while also taking advantage of the benefits of conducting highly stereocontrolled reactions in a solvent-free environment (i.e., green chemistry). The latter provides an opportunity to modify bulk physical properties of solids (e.g., optical properties) through changes to molecular structure that result from a solid-state reaction. Reactions in the solid state have been difficult to control owing to frustrating effects of molecular close packing. The high degree of order provided by the solid state also means that the templates can be developed to determine how principles of supramolecular chemistry can be generally employed to form covalent bonds. The paradigm of synthetic chemistry employed by Nature is based on integrating noncovalent and covalent bonds. The templates assemble olefins via either hydrogen bond or coordination-driven self-assembly for intermolecular [2 + 2] photodimerizations. The olefins are assembled within discrete, or finite, self-assembled complexes, which effectively decouples chemical reactivity from effects of crystal packing. The control of the solid-state assembly process affords the supramolecular construction of targets in the form of cyclophanes and ladderanes. The targets form stereospecifically, in quantitative yield, and in gram amounts. Both [3]- and [5]-ladderanes have been synthesized. The ladderanes are comparable to natural ladderane lipids, which are a new and exciting class of natural products recently discovered in anaerobic marine bacteria. The organic templates function as either hydrogen bond donors or hydrogen bond acceptors. The donors and acceptors generate cyclobutanes lined with pyridyl and carboxylic acid groups, respectively. The metal-organic templates are based on Zn(II) and Ag(I) ions. The reactivity involving Zn(II) ions is shown to affect optical properties in the form of solid-state fluorescence. The solids based on both the organic and metal-organic templates undergo rare single-crystal-to-single-crystal reactions. We also demonstrate how the cyclobutanes obtained from this method can be applied as novel polytopic ligands of metallosupramolecular assemblies (e.g., self-assembled capsules) and materials (e.g., metal-organic frameworks). Sonochemistry is also used to generate nanostructured single crystals of the multicomponent solids or cocrystals based on the organic templates. Collectively, our observations suggest that the organic solid state can be integrated into more mainstream settings of synthetic organic chemistry and be developed to construct functional crystalline solids. 相似文献
8.
Katsuhiko Ariga Qingmin Ji Jonathan P. Hill Ajayan Vinu 《Journal of Inorganic and Organometallic Polymers and Materials》2010,20(1):1-9
Inorganic materials of nanometric dimensions and controllable morphologies are now widely available permitting their use as building blocks in supramolecular structures. Incorporation of inorganic blocks into hybrid structures can yield unique materials that have no naturally occurring or organic synthetic analogues. In this short review, we describe the construction and functions of supramolecular materials prepared using inorganic building blocks, with emphasis on material-like components. Examples described in this review are categorized as (i) inorganic structures within organic assemblies (silica-supported Langmuir monolayers, organic–inorganic lipid bilayer vesicles etc.), (ii) organic components in inorganic nanospaces (mesoporous materials including biocomponents such as peptides and proteins), (iii) organic/inorganic nanohybrid blends (nanorod-liquid crystal blends and surfactant-guided gold nanostructures), and (iv) hierarchic structures (layer-by-layer assemblies of mesoporlous carbons and capsules). 相似文献
9.
The exploitation of DNA for the production of nanoscale architectures presents a young yet paradigm breaking approach, which addresses many of the barriers to the self-assembly of small molecules into highly-ordered nanostructures via construct addressability. There are two major methods to construct DNA nanostructures, and in the current review we will discuss the principles and some examples of applications of both the tile-based and DNA origami methods. The tile-based approach is an older method that provides a good tool to construct small and simple structures, usually with multiply repeated domains. In contrast, the origami method, at this time, would appear to be more appropriate for the construction of bigger, more sophisticated and exactly defined structures. 相似文献
10.
11.
New biocompatible and water soluble hybrid materials containing multi-wall carbon nanotubes (MWCNTs) as core and hyperbranched polyglycerol (PG) as shell were synthesized successfully. In this work, pristine MWCNTs were opened and functionalized through treatment with acid and polyglycerol was covalently grafted onto their surface by the “grafting from” approach based on in-situ ring-opening polymerization of glycidol. Some short-term In vitro cytotoxicity and hemocompatibility tests were conducted on HT1080 cell line (human Fibrosarcoma), because this epithelial cell line can be one of the first route of entry of the exogenous materials to the vascular system and therefore subsequent interactions with the whole body, in order to investigate their potential application in nanomedicine and to understand the limitation and capability of these material as nanoexcipients in biological systems. 相似文献
12.
Masoud Sarraf Bahman Nasiri-Tabrizi Chai Hong Yeong Hamid Reza Madaah Hosseini Saeed Saber-Samandari Wan Jefrey Basirun Takuya Tsuzuki 《Ceramics International》2021,47(3):2917-2948
Nanomedicine has seen a significant rise in the development of new research tools and clinically functional devices. In this regard, significant advances and new commercial applications are expected in the pharmaceutical and orthopedic industries. For advanced orthopedic implant technologies, appropriate nanoscale surface modifications are highly effective strategies and are widely studied in the literature for improving implant performance. It is well-established that implants with nanotubular surfaces show a drastic improvement in new bone creation and gene expression compared to implants without nanotopography. Nevertheless, the scientific and clinical understanding of mixed oxide nanotubes (MONs) and their potential applications, especially in biomedical applications are still in the early stages of development. This review aims to establish a credible platform for the current and future roles of MONs in nanomedicine, particularly in advanced orthopedic implants. We first introduce the concept of MONs and then discuss the preparation strategies. This is followed by a review of the recent advancement of MONs in biomedical applications, including mineralization abilities, biocompatibility, antibacterial activity, cell culture, and animal testing, as well as clinical possibilities. To conclude, we propose that the combination of nanotubular surface modification with incorporating sensor allows clinicians to precisely record patient data as a critical contributor to evidence-based medicine. 相似文献
13.
In general, fabrication of well-defined organic nanowires or nanobelts with controllable size and morphology is not as advanced as for their inorganic counterparts. Whereas inorganic nanowires are widely exploited in optoelectronic nanodevices, there remains considerable untapped potential in the one-dimensional (1D) organic materials. This Account describes our recent progress and discoveries in the field of 1D self-assembly of planar pi-conjugated molecules and their application in various nanodevices including the optical and electrical sensors. The Account is aimed at providing new insights into how to combine elements of molecular design and engineering with materials fabrication to achieve properties and functions that are desirable for nanoscale optoelectronic applications. The goal of our research program is to advance the knowledge and develop a deeper understanding in the frontier area of 1D organic nanomaterials, for which several basic questions will be addressed: (1) How can one control and optimize the molecular arrangement by modifying the molecular structure? (2) What processing factors affect self-assembly and the final morphology of the fabricated nanomaterials; how can these factors be controlled to achieve the desired 1D nanomaterials, for example, nanowires or nanobelts? (3) How do the optoelectronic properties (e.g., emission, exciton migration, and charge transport) of the assembled materials depend on the molecular arrangement and the intermolecular interactions? (4) How can the inherent optoelectronic properties of the nanomaterials be correlated with applications in sensing, switching, and other types of optoelectronic devices? The results presented demonstrate the feasibility of controlling the morphology and molecular organization of 1D organic nanomaterials. Two types of molecules have been employed to explore the 1D self-assembly and the application in optoelectronic sensing: one is perylene tetracarboxylic diimide (PTCDI, n-type) and the other is arylene ethynylene macrocycle (AEM, p-type). The materials described in this project are uniquely multifunctional, combining the properties of nanoporosity, efficient exciton migration and charge transport, and strong interfacial interaction with the guest (target) molecules. We see this combination as enabling a range of important technological applications that demand tightly coupled interaction between matter, photons, and charge. Such applications may include optical sensing, electrical sensing, and polarized emission. Particularly, the well-defined nanowires fabricated in this study represent unique systems for investigating the dimensional confinement of the optoelectronic properties of organic semiconductors, such as linearly polarized emission, dimensionally confined exciton migration, and optimal pi-electronic coupling (favorable for charge transport). Combination of these properties will make the 1D self-assembly ideal for many orientation-sensitive applications, such as polarized light-emitting diodes and flat panel displays. 相似文献
14.
Giuntini F Dumoulin F Daly R Ahsen V Scanlan EM Lavado AS Aylott JW Rosser GA Beeby A Boyle RW 《Nanoscale》2012,4(6):2034-2045
Polyacrylamide nanoparticles bearing two orthogonal reactive functionalities were prepared by reverse microemulsion polymerisation. Water-soluble photosensitisers and peptide or carbohydrate moieties were sequentially attached to the new nanospecies by orthogonal conjugations based on copper-catalysed azide-alkyne cycloaddition and isothiocyanate chemistry. 相似文献
15.
Mukesh K. Pandey Rahul Tyagi Ke Yang Clark K. Colton Virinder S. Parmar Eric Aiazian 《Polymer》2011,52(21):4727-4735
Since decades, varieties of amphiphilic polymers have been widely investigated for improving aqueous solubility and bioavailability of the hydrophobic drugs. The upcoming approach is to develop more efficient advanced nano-carrier molecules capable of more than drug delivery. Herein, we report the design and synthesis of some novel carrier molecules with multiple applications including drug encapsulation, drug delivery and diagnosis (imaging). Copolymers were synthesized using dimethyl 5-hydroxy/aminoisophthalate, poly(ethylene glycols) and Candida antarctica lipase (CAL-B, Novozym 435). CAL-B selectively catalyses the trans esterification reaction under solvent less condition using primary hydroxyls of poly(ethylene glycols) and leaving behind phenolic hydroxyl for post polymerization modifications. The obtained copolymers were further tethered with perfluorinated aliphatic chains to make them amphiphilic. The synthesized materials were investigated for their micellar behavior, temperature dependent stability (in aqueous solution), encapsulation capacity, and imaging potential by measuring the sensitivity of these perfluorinated materials towards 19F NMR in NMR tube. It was observed that perfluorinated amphiphilic copolymers could encapsulate up to 14% (by wt) of hydrophobic drug and showed decent 19F NMR signals even at a very low concentration. Therefore, these perfluorinated copolymers hold considerable potential for further investigation as advanced nano-carrier molecules for biomedical applications. 相似文献
16.
Nakamura T Akita H Yamada Y Hatakeyama H Harashima H 《Accounts of chemical research》2012,45(7):1113-1121
In the 21st century, drug development has shifted toward larger molecules such as proteins and nucleic acids, which require the use of new chemical strategies. In this process, the drug delivery system plays a central role and intracellular targeting using nanotechnology has become a key technology for the development of successful new medicines. We have developed a new delivery system, a multifunctional envelope-type nanodevice (MEND) based on "Programmed Packaging." In this new concept of packaging, multifunctional nanodevices are integrated into a nanocarrier system according to a program designed to overcome all barriers during the course of biodistribution and intracellular trafficking. In this Account, we introduce our method for delivering nucleic acids or proteins to intracellular sites of action such as the cytosol, nucleus, and mitochondria and for targeting selective tissues in vivo via systemic administration of the nanodevices. First, we introduce an octaarginine-modified MEND (R8-MEND) as an efficient intracellular delivery system, designed especially for vaccinations and transgene expression. Many types of cells can internalize the R8-MEND, mainly by inducing macropinocytosis, and the MEND escapes from macropinosomes via membrane fusion, which leads to efficient antigen presentation via the major histocompatibility complex I pathway in antigen-presenting cells. In addition, the transfection activities of the R8-MEND in dividing cells, such as HeLa or A549 cells, are as high as those for adenovirus. However, because the R8-MEND cannot induce sufficient transgene activity in primary cultured dendritic cells, which are critical regulators of the immune response, we converted the R8-MEND into a tetralamellar MEND (T-MEND). The T-MEND uses a new packaging method and delivers condensed pDNA into the nucleus via fusion between the envelopes and the nuclear membrane. To achieve efficient transfection activity, we also optimized the decondensation of nucleic acids within the nucleus. To optimize mitochondrial drug delivery, we introduced the MITOPorter. Many types of materials can be packaged into this liposome-based nanocarrier and then delivered to mitochondria via membrane fusion mechanisms. Finally, we describe an integrated strategy for in vivo tumor delivery and optimization of intracellular trafficking. Successful tumor delivery typically requires coating the surfaces of nanoparticles with PEG, but PEG can also limit uptake by the reticuloendothelial system and reduce the efficiency of intracellular trafficking. Here we integrate the optimum biodistribution and intracellular trafficking of the MEND with an innovative strategy such as enzymatically cleavable PEG and a short membrane peptide, GALA. Some of these strategies will soon be tested in the clinic. 相似文献
17.
D. Joksimovic D.A. Savic G.A. Walters D. Bixio K. Katsoufidou S.G. Yiantsios 《Desalination》2008,218(1-3):142-153
Decision support software (DSS) for Water Treatment for Reuse with Network Distribution (WTRNet) has been developed within the AQUAREC project on “Integrated Concepts for Reuse of Upgraded Wastewater”, under the Fifth European Community Framework Programme. The overall objective of work conducted as part of the AQUAREC project has been the development and validation of system design principles for water reuse systems. The DSS provides an integrated framework for optimisation of treatment and distribution aspects of water reuse and the selection of end-users, and has been used in the development of the design principles. The principle components of the software (simulation and optimisation models) are presented, followed by the discussion on the software validation. A case study is then illustrated, on which WTRNet has been applied to develop least-cost design alternatives. Design principles for water reuse systems that were achieved by applying the WTRNet tool are presented, in which the importance of utilising formal optimisation in determining the most promising design alternatives is demonstrated. 相似文献
18.
Recent advances in nanoscience and biomedicine have expanded our ability to design and construct multifunctional nanoparticles that combine targeting, therapeutic, and diagnostic functions within a single nanoscale complex. The theranostic capabilities of gold nanoshells, spherical nanoparticles with silica cores and gold shells, have attracted tremendous attention over the past decade as nanoshells have emerged as a promising tool for cancer therapy and bioimaging enhancement. This Account examines the design and synthesis of nanoshell-based theranostic agents, their plasmon-derived optical properties, and their corresponding applications. We discuss the design and preparation of nanoshell complexes and their ability to enhance the photoluminescence of fluorophores while maintaining their properties as MR contrast agents. In this Account, we discuss the underlying physical principles that contribute to the photothermal response of nanoshells. We then elucidate the photophysical processes that induce nanoshells to enhance the fluorescence of weak near-infrared fluorophores. Nanoshells illuminated with resonant light are either strong optical absorbers or scatterers, properties that give rise to their unique capabilities. These physical processes have been harnessed to visualize and eliminate cancer cells. We describe the application of nanoshells as a contrast agent for optical coherence tomography of breast carcinoma cells in vivo. Our recent studies examine nanoshells as a multimodal theranostic probe, using these nanoparticles for near-infrared fluorescence and magnetic resonance imaging (MRI) and for the photothermal ablation of cancer cells. Multimodal nanoshells show theranostic potential for imaging subcutaneous breast cancer tumors in animal models and the distribution of tumors in various tissues. Nanoshells also show promise as light-triggered gene therapy vectors, adding temporal control to the spatial control characteristic of nanoparticle-based gene therapy approaches. We describe the fabrication of DNA-conjugated nanoshell complexes and compare the efficiency of light-induced and thermally-induced release of DNA. Double-stranded DNA nanoshells also provide a way to deliver small molecules into cells: we describe the delivery and light-triggered release of DAPI (4',6-diamidino-2-phenylindole), a dye molecule used to stain DNA in the nuclei of cells. 相似文献
19.
We report cell endocytosis, drug release, NMR relaxometry and in vitro MRI studies on a novel class of superparamagnetic colloidal nanocrystal clusters (CNCs) with various biocompatible coatings. It is shown that the transverse relaxivity r2, the parameter representing the MRI efficiency in negative contrast agents, for the PVA-coated, PEGF-coated, and crosslinked PEGF-coated CNCs, is high enough to contrast suitably the magnetic resonance images. The same samples have shown a good ability also in drug releasing (particularly the crosslinked PEGF-coated compound), thus finally allowing us to propose this class of compounds for future applications in theranostics. 相似文献
20.
Koosha Fereshteh Farsangi Zohreh Jomeh Samadian Hadi Amini Seyed Mohammad 《Journal of Porous Materials》2021,28(6):1961-1968
Journal of Porous Materials - The development of theranostic nanostructures is one of the most advanced branches of pharmaceutical and medical sciences in the world today. Due to the unique... 相似文献