首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Y.H Li  B.K Gullett 《Fuel》2003,82(4):451-457
The effect of varying physical and chemical properties of activated carbons on adsorption of elemental mercury (Hg0) was studied by treating two activated carbons to modify their surface functional groups and pore structures. Heat treatment (1200 K) in nitrogen (N2), air oxidation (693 K), and nitric acid (6N HNO3) treatment of two activated carbons (BPL, WPL) were conducted to vary their surface oxygen functional groups. Adsorption experiments of Hg0 by the activated carbons were conducted using a fixed-bed reactor at a temperature of 398 K and under N2 atmosphere. The pore structures of the samples were characterized by N2 and carbon dioxide (CO2) adsorption. Temperature-programmed desorption (TPD) and base-acid titration experiments were conducted to determine the chemical characteristics of the carbon samples. Characterization of the physical and chemical properties of activated carbons in relation to their Hg0 adsorption capacity provides important mechanistic information on Hg0 adsorption. Results suggest that oxygen surface complexes, possibly lactone and carbonyl groups, are the active sites for Hg0 capture. The carbons that have a lower carbon monoxide (CO)/CO2 ratio and a low phenol group concentration tend to have a higher Hg0 adsorption capacity, suggesting that phenol groups may inhibit Hg0 adsorption. The high Hg0 adsorption capacity of a carbon sample is also found to be associated with a low ratio of the phenol/carbonyl groups. A possible Hg0 adsorption mechanism, which is likely to involve an electron transfer process during Hg0 adsorption in which the carbon surfaces may act as an electrode for Hg0 oxidation, is also discussed.  相似文献   

2.
Jia Guo  Ye Luo  Ru-an Chi  Xiu-ting Bao 《Carbon》2007,45(2):330-336
Adsorption of hydrogen sulphide (H2S) onto activated carbons derived from oil palm shell, an abundant solid waste from palm oil processing mills, by thermal or chemical activation method was investigated in this paper. Dynamic adsorption in a fixed bed configuration showed that the palm-shell activated carbons prepared by chemical activation (KOH or H2SO4 impregnation) performed better than the palm-shell activated carbon by thermal activation and a coconut-shell-based commercial activated carbon. Static equilibrium adsorption studies confirmed this experimental result. An intra-particle Knudsen diffusion model based on a Freundlich isotherm was developed for predicting the amount of H2S adsorbed. Desorption tests at the same temperature as adsorption (298 K) and at an elevated temperature (473 K) were carried out to confirm the occurrence of chemisorption and oxidation of H2S on the activated carbon. Surface chemistries of the palm-shell activated carbons were characterized by Fourier transform infrared spectroscopy and Boehm titration. It was found that uptaking H2S onto the palm-shell activated carbons was due to different mechanisms, e.g. physisorption, chemisorption and/or H2S oxidation, depending on the activation agent and activation method.  相似文献   

3.
E.J. Ra  E. Raymundo-Piñero  F. Béguin 《Carbon》2009,47(13):2984-2992
Porous carbon nanofiber paper has been obtained by one-step carbonization/activation of PAN-based nanofiber paper at temperatures from 700 to 1000 °C in CO2 atmosphere. The paper was used as supercapacitor electrode without any binder or percolator. At low temperature, e.g., ?900 °C, nitrogen enriched carbons with a poorly developed specific surface area (SBET ? 400 m2/g) are obtained. In aqueous electrolytes, these carbons withstand high current loads without a noticeable decrease of capacitance, and the normalized capacitance reaches 67 μF/cm2. At 10 s time constant, the values of energy and power densities are 3-4 times higher than for activated carbons (AC) presenting higher specific surface area. By carbonization/activation at 1000 °C, subnanometer pores are developed and SBET = 705 m2/g. Despite moderate BET specific surface area, the capacitance reaches values higher than 100 F/g in organic electrolyte. At high power densities, the nanofiber paper obtained at 1000 °C outperforms the energy density retention of ACs in organic electrolyte. The high power capability of the carbon nanofiber papers in the two kinds of electrolytes is attributed both to the high intrinsic conductivity of the fibers and to the high diffusion rate of ions in the opened mesopores.  相似文献   

4.
Kaisheng Xia  Jinhua Jiang  Juan Hu 《Carbon》2008,46(13):1718-1726
Various porous carbons were prepared by CO2 activation of ordered mesoporous carbons and used as electrode materials for supercapacitor. The structures were characterized by using X-ray diffraction, transmission electron microscopy and nitrogen sorption at 77 K. The effects of CO2 treatment on their pore structures were discussed. Compared to the pristine mesoporous carbons, the samples subjected to CO2 treatment exhibited remarkable improvement in textural properties. The electrochemical measurement in 6 M KOH electrolyte showed that CO2 activation leads to better capacitive performances. The carbon CS15A6, which was obtained after CO2 treatment for 6 h at 950 °C using CMK-3 as the precursor, showed the best electrochemical behavior with a specific gravimetric capacitance of 223 F/g and volumetric capacitance of 54 F/cm3 at a scan rate of 2 mV/s and 73% retained ratio at 50 mV/s. The good capacitive behavior of CS15A6 may be attributed to the hierarchical pore structure (abundant micropores and interconnected mesopores with the size of 3-4 nm), high surface area (2749 m2/g), large pore volume (2.09 cm3/g), as well as well-balanced microporosity and mesoporosity.  相似文献   

5.
The microporosity of granular and disc-shaped activated carbons prepared by both ZnCl2 and H3PO4 activation has been evaluated by adsorption of nitrogen at −196 °C and immersion calorimetry into liquids of different molecular dimensions (dichloromethane, benzene, 2,2-dimethylbutane, carbon tetrachloride and α-pinene). Experimental results show that immersion calorimetry into dichloromethane provides values of surface area more similar to nitrogen adsorption (BET equation) than benzene. No such effect is found for physically activated carbon. Some apparent anomalies have also been detected for the enthalpy of immersion of carbons activated with H3PO4 into α-pinene due to a small amount of phosphorous remaining in the carbon after washing. This is not the case for carbons activated with ZnCl2, because the washing was more effective in the removal of the chemical.  相似文献   

6.
Mei-Chiung Huang 《Carbon》2003,41(5):951-957
Porous carbons with controlled nitrogen contents were prepared from phenol-formaldehyde resins impregnated with different amounts of m-phenylenediamine. The chemical compositions of the resin precursors and the resulting carbons were characterized. Comparison of results from X-ray photoelectron spectroscopic and elemental analysis showed that the nitrogen functional groups in the carbons are more numerous in the internal part and are mainly of the pyridine type. The catalytic activity of the carbons in NO reduction with NH3 increased upon nitrogen impregnation. The activity showed a clear correlation with the nitrogen content obtained using X-ray photoelectron spectroscopy, indicating that the reaction mainly occurred at the external part of the carbon particles. Under a low temperature regime (<140 °C), the reaction was dominated by the equilibrium adsorption of the reactants, which rendered a negative apparent activation energy, while chemical interactions on the surface controlled the reaction at higher temperatures. The effects of the impregnated nitrogen atoms were suggested, due to the introduction of extra electron to the aromatic rings in carbon, to promote the adsorption of NO, as well as to activate the adsorbed species.  相似文献   

7.
An upper limit for hydrogen storage at 77 K on activated carbons was clearly observed in the present experimental work. Such a limit is around 6.4 wt.%, i.e., close to the theoretical limit of 6.8 wt.%. Results of hydrogen storage were obtained in three independent laboratories using volumetric and gravimetric devices. Lab-made activated carbons (ACs) were found to have higher capacities than those of the commercial material AX-21. A maximum excess hydrogen storage capacity of 6.0 wt.% at 77 K and 4 MPa was obtained. This maximum was reduced to 0.6 wt.% at 298 K and 5 MPa. ACs with surface areas (SBET) as high as 3220 m2 g−1 were prepared from chemical activation of anthracites with alkali (Na and K) hydroxides. At 77 K and 4 MPa, excess hydrogen storage capacity was directly correlated with SBET for ACs having SBET values lower than 2630 m2/g. Hydrogen uptake at 77 K also correlated with micropore volume and strongly depended on average pore diameter.  相似文献   

8.
High surface area activated carbons were prepared by simple thermo-chemical activation of Jatropha curcas fruit shell with NaOH as a chemical activating agent. The effects of the preparation variables, which were impregnation ratio (NaOH:char), activation temperature and activation time, on the adsorption capacity of iodine and methylene blue solution were investigated. The activated carbon which had the highest iodine and methylene blue numbers was obtained by these conditions as follows: 4:1 (w/w) NaOH to char ratio, 800 °C activation temperature and 120 min activation time. Characterization of the activated carbon obtained was performed by using scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and nitrogen adsorption isotherm as BET. The results present that the activated carbon possesses a large apparent surface area (SBET = 1873 m2/g) and high total pore volume (1.312 cm3/g) with average pore size diameter of 28.0 Å.  相似文献   

9.
The classical DR method and the Quenched Solid Density Functional Theory (QSDFT) approach have been used to analyse N2 at 77 K isotherms determined on activated carbons prepared by alkaline chemical activation of different lignins. The QSDFT pore size distributions are bimodal with a narrow peak below 1 nm and a broad peak from 1 to 2.5-3.5 nm. Deconvolution allows estimation of the volumes and widths of the narrow micropores. These are lower than estimated by the DR analysis as this does not separate micropore and non-micropore adsorption. On the basis of the QSDFT analysis, the optimum conditions for obtaining materials with a high volume of narrow micropores were activation temperatures of 550-650 °C, hydroxide/lignin ratio of 1 and dwell time at the maximum activation temperature of 30 min. KOH was preferable to NaOH as it requires lower temperatures and results in materials with higher narrow micropore volumes. The “best” material obtained, prepared with KOH at 550 °C, had mean micropore width of 0.7 nm and micropore volume of 0.37 cm3 g−1 which compares very favourably with molecular sieve carbons prepared from synthetic polymers. Furthermore, this material was obtained with an activation yield of 32.9%, which is quite high for alkaline chemical activation.  相似文献   

10.
J.M. Rosas  T. Cordero 《Fuel》2009,88(1):19-527
Activated carbon fibers were prepared by chemical activation of hemp fibers with phosphoric acid at different carbonization temperatures and impregnation ratios. Surface properties of the activated carbons fibers were significantly influenced by the activation temperature and the impregnation ratio. An increase of either of these parameters produced a high development of the porous structure of the fibers. Activated carbon fibers with apparent surface area of 1350 m2/g and mesopore volume of 1.25 cm3/g were obtained at 550 °C with an impregnation ratio of 3. The activated carbon fibers presented a high oxidation resistance, due to the presence of phosphorus compounds on the carbon surface. The oxidation resistance results suggest that C-O-PO3 and mainly C-PO3 and C-P groups act as a physical barrier, blocking the active carbon sites for the oxidation reaction.  相似文献   

11.
The purpose of this study was to investigate the influence of the method of adsorption of N2 at − 196 °C on the isotherm obtained for, and hence derived textural parameters of, a wide series of carbonaceous materials (CM). Two pyrolyzed products, six activated carbons and two carbon blacks were used. The carbonized products were prepared by pyrolysis of cherry stones at 600 or 900 °C in nitrogen atmosphere (P-600, P-900). Three activated carbons were made by activation of P-600 at 275 °C in air and of P-900 at 850 °C in carbon dioxide or steam, whereas the remaining CM were commercial products. The adsorption isotherms for N2 at − 196 °C were determined by static and dynamic methods in Quantachrome equipments. The CM were further characterized texturally by means of mercury porosimetry and helium and mercury density measurements. Because of the presence of helium in the adsorptive gas stream, the adsorption of nitrogen noticeably decreases for the CM containing micropores obstructed with tarry products (i.e. P-600 and the activated carbon prepared from it by air activation). For the rest of the activated carbons the adsorption increases, as they must possess narrow micropores having easier access to N2 at − 196 °C. Helium causes a decrease in the degree of interaction between the nitrogen molecules in the gas stream and as a result the diffusion of nitrogen in pores of the adsorbent increases. For the carbon blacks, however, helium hardly affects the adsorption of nitrogen, except for at high relative pressures of this gas. Helium also influences the capillary condensation phenomenon occurring in mesopores. The variation percentages in the micro- and mesopore volumes are as high as 20 and 50, respectively. Such percentages as a rule are higher for the activated carbons.  相似文献   

12.
This paper deals with the effect of the concentration of nitric acid solutions on the properties of activated carbons obtained by the oxidation of a parent activated carbon. For this purpose a mineral coal from Algeria has been used as raw material to prepare the parent active carbon AC. This was further treated with nitric acid solutions. The analysis of the samples includes the chemical and textural characterization. The former was carried out by selective titrations and FTIR spectroscopy. The latter, by nitrogen and carbon dioxide adsorption at 77 and 273 K, respectively, and by adsorption of organic probes (benzene, dichloromethane, cyclohexane and 2,2-dimethyl butane) at 303 K. The nitrogen adsorption isotherms have been analysed by using the BET equation, αs-method and molecular simulation. The Dubinin-Radushkevich approach has been applied to the carbon dioxide and vapours adsorption data. The results show that the treatment with 2 N nitric acid solution is very appropriate because it introduces a large amount of oxygen containing groups with a small change of the textural characteristics of the parent AC. More concentrated nitric acid solutions change in large extent the textural properties although they also introduce large amount of chemical groups.  相似文献   

13.
R. Pietrzak  K. Jurewicz  K. Babe? 《Fuel》2010,89(11):3457-3467
The paper presents the results of a study on obtaining N-enriched active carbons from bituminous coal and on testing its use as an electrode material in supercapacitors. The coal was carbonised, activated with KOH and ammoxidised by a mixture of ammonia and air at the ratio 1:3 at 300 °C or 350 °C, at different stages of the production, that is, at those of precursor, carbonisate, and active carbon. The products were microporous N-enriched active carbon samples of well-developed surface area reaching from 1577 to 2510 m2/g and containing 1.0 to 8.5 wt% of nitrogen. The XPS measurements have shown that in the active carbons enriched in nitrogen at the stage of precursor and at the stage of carbonisate, the dominant nitrogen species are the N-5 groups, while in the samples ammoxidised at the last stage of the treatment the dominant nitrogen species are the surface groups of imines and/or nitriles, probably accompanied by amines and amides. The paper reports the results of a comprehensive study of the effect of the structure and chemical composition of a series of active carbon samples of different properties on their capacity performance in water solutions of H2SO4 or KOH, with the behaviour of positive and negative electrodes analysed separately.  相似文献   

14.
Jayshri A. Thote 《Carbon》2010,48(2):396-27
In situ nitrogen enriched carbon was synthesized from locally available low cost soybean as the proteinaceous source. The material was synthesized by chemical activation using zinc chloride followed by physical activation using CO2. The surface area of synthesized nitrogen enriched carbon was found to be 811 m2/g which is comparable with commercially available activated carbon. The nitrogen enriched carbon was having a breakthrough adsorption capacity of 23 mg/g at 120 °C which was almost three times higher in comparison with the commercially available activated carbon for a gas mixture comprising 15% CO2 balanced with helium. This high adsorption capacity was attributed to the presence of nitrogen group within the carbon matrix, which was estimated to be about 0.64% as determined using the Kjeldahl’s method. The presence of different nitrogen containing groups assisting the adsorption of CO2 in the synthesized sample was also confirmed by infrared analysis. For checking the consistent performance of the synthesized carbon, multi-cycle adsorption-desorption studies were carried out at 30 and 75 °C in binary mixture of CO2/N2.  相似文献   

15.
Activation of mesoporous carbon CMK-3 with CO2 for hydrogen storage was studied. Huge structure and texture changes emerged for the activated CMK-3 based on the characterization by using XRD, TEM and nitrogen adsorption at 77 K. The ordered mesoporous structure of CMK-3 gradually became disorder and its specific surface area and volume of pores especially micropores were enhanced remarkably. Hydrogen sorption measurement showed that the activation led to an obvious increase of the H2 sorption capacity of CMK-3. The maximum H2 uptake of 2.27 wt% at 77 K and 1 bar was obtained for the sample activated at 1223 K for 8 h. The small pores with the diameter smaller than 1 nm contributed greatly to the H2 uptake, and were confirmed more effective than other pores for hydrogen storage.  相似文献   

16.
Activated carbons were prepared by phosphoric acid activation of fruit stones in air at temperatures 400-1000 °C. The surface chemistry was investigated by elemental analysis, cation exchange capacity, infrared spectroscopy and potentiometric titration. The porous structure was analyzed from adsorption isotherms (N2 at 77 K and CO2 at 273 K). It was demonstrated that all carbons show considerable cation exchange capacity, the maximum (2.2 mmol g−1) being attained at 700 °C, which coincides with the maximum contents of phosphorus and oxygen. The use of air instead of argon during thermal treatment increased the amount of cation exchangeable surface groups for carbons obtained at 400-700 °C. Proton affinity distributions of all carbons show the presence of three types of surface groups with pK 1.8-3.1 (carboxylic and polyphosphates), 4.8-6.3 (second dissociation of carboxylic, weak acid in polyphosphates and enol structures) and 8.1-9.7 (phenols and enol structures). Carbons obtained in air at 400-600 °C show enhanced copper adsorption from 0.001 mol L−1 Cu(NO3)2 in acidic solutions as compared to carbons obtained in argon. Carbons obtained in air show well-developed porous structure that is equivalent or higher as compared with carbons obtained in argon; the difference being progressively increased with increasing treatment temperature.  相似文献   

17.
Porous carbon black was modified to introduce oxygen and nitrogen surface functionality and characterized using wet titration methods, elemental analysis, XPS, TEM, thermal analysis, adsorption of nitrogen and carbon dioxide. Then the electrochemical capacitance was measured for cations and anions in 1 M H2SO4. The results were compared to those obtained on activated carbons. The modified carbon black samples have four times higher adsorption of anions than cations. It is hypothesized that the graphitic microstructure of carbon blacks with structural defects is responsible for intercalation of anions in-between the graphene layers which take place at potentials higher than 0.75 V vs. Ag/AgCl and at moderately low current loads. This process is reversible and the deintercalation occurs at approximately 0.4 V vs. Ag/AgCl during the cathodic reduction. Introduction of nitrogen have generally a detrimental effect on the anion adsorption capacitance due to a structural defects blockage. At high current loads this phenomenon of enhanced anion adsorption capacitance becomes less pronounced due to the kinetic limitations. For amorphous activated carbons enhanced anion electrosorption at low current loads is governed by proton assistance while at high current loads larger cation capacitance is due to the pseudocapacitive interactions of protons with nitrogen and oxygen functional groups.  相似文献   

18.
Carbon nutshells and hydrolytic lignin were used as starting materials for the preparation of microporous active carbons. Optimum parameters for cedar nutshell carbonization have been selected (temperature of carbonization 700-800 °C, rate of heating less than 3 °C/min) for the preparation of microporous carbons (average pore width 0.56 nm). The textural characteristics of microporous carbons made from nutshell are similar to those of a ‘Coconut’ carbon molecular sieve, but the latter has both a higher CO2 adsorption capacity and a higher coefficient of N2/O2 separation. The influence of carbonization and steam-activation parameters on the microtexture and molecular-sieve properties of granular carbons made from hydrolytic lignin was also investigated. A low rate of heating (less 3 °C/min) promotes the formation of micropores with average sizes around 0.56-0.58 nm at carbonization temperature 700 °C. At the same carbonization temperature the average sizes of micropores were 0.7-0.78 nm at rates of heating more than 3 °C/min. The activation of lignin-char with steam at 800 °C resulted in the formation of active carbons with more developed micropore volume (0.3-0.35 cm3 g−1) and with micropores of widths around 0.6-0.66 nm which are able to separate He from a He-CH4 mixture. The size of the micropores was varied as a function of burn off value.  相似文献   

19.
Different fibrous activated carbons were prepared from natural precursors (jute and coconut fibers) by physical and chemical activation. Physical activation consisted of the thermal treatment of raw fibers at 950 °C in an inert atmosphere followed by an activation step with CO2 at the same temperature. In chemical activation, the raw fibers were impregnated in a solution of phosphoric acid and heated at 900 °C in an inert atmosphere. The characteristics of the fibrous activated carbons were determined in the following terms: elemental analysis, pore characteristics, SEM observation of the porous surface, and surface chemistry. As the objective of this study was the reuse of waste for industrial wastewater treatment, the adsorption properties of the activated carbons were tested towards pollutants representative of industrial effluents: phenol, the dye Acid Red 27 and Cu2+ ions. Chemical activation by phosphoric acid seems the most suitable process to produce fibrous activated carbon from cellulose fiber. This method leads to an interesting porosity (SBET up to 1500 m2 g−1), which enables a high adsorption capacity for micropollutants like phenol (reaching 181 mg g−1). Moreover, it produces numerous acidic surface groups, which are involved in the adsorption mechanisms of dyes and metal ions.  相似文献   

20.
In order to optimize the performance of supercapacitors, the capacitance of the carbon materials used as electrodes was strictly related to their pores size and also to their redox properties. Well-sized carbons have been elaborated through a template technique using mesoporous silica. For a series of template carbons, a perfect linear dependence has been found for the capacitance values versus the micropore volume determined by CO2 adsorption. The redox properties of carbons were enhanced by substituting nitrogen for carbon up to ca. 7 wt.%. For carbons with similar nanotextural characteristics, the electrochemical measurements showed a proportional increase of the specific capacitance with the nitrogen content in acidic electrolyte. For an activated carbon from polyacrylonitrile with a specific surface area of only 800 m2 g−1, but with a nitrogen content of 7 wt.%, the capacitance reaches 160 F g−1, with very little fading during cycling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号