首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
刘晓为  赵振刚  李拓  王鑫 《半导体学报》2011,32(3):034006-5
A novel capacitance-type relative humidity(RH) sensor based on multi-wall carbon nanotube/SiO_2 (MWCNTs/SiO_2) composite film is reported.Details of the fabrication process,possible sensing mechanism and sensing characteristics,such as linearity and sensitivity,are described.The capacitance of the MWCNTs/SiO_2 composite film shows typical concentration percolation behavior with increasing MWCNT loading.At loadings below the percolation threshold(1.842wt%),the sensor capacitance increases obviously with i...  相似文献   

2.
采用共沉淀法制备SnO2-LiZnVO4系湿敏材料,研究了LiZnVO4的掺杂量对材料湿敏电容的影响。结果表明:LiZnVO4的掺杂量,环境的相对湿度(RH)、测试信号频率对湿敏电容有较大影响。当x(LiZnVO4)为10%时,可使材料具有合适的低湿电容和灵敏度。在100Hz下,当环境的RH从33%上升到93%时,SnO2-LiZnVO4系湿敏材料制备的湿敏元件的电容增量可达起始值的2300%,显示出较高的电容湿度敏感性。湿敏元件的电容响应时间约为54s,恢复时间约为60s。湿滞约为RH6%。  相似文献   

3.
A thin film of blended poly-N-epoxypropylcarbazole (PEPC) (25 wt.%),nickel phthalocyanine (NiPc) (50 wt.%) and ZnO nano-powder (25 wt.%) in benzene (5 wt.%) was spin-coated on a glass substrate with silver electrodes to produce a surface-type Ag/PEPC/NiPc/ZnO/Ag capacitive and resistive sensor.Sensors with two different PEPC/NiPc/ZnO film thicknesses (330 and 400 nm) were fabricated and compared.The effects of humidity on capacitance and resistance of the Ag/PEPC/NiPc/ZnO/Ag sensors were investigated at two frequencies of the applied voltage:120 Hz and 1 kHz.It was observed that at 120 Hz under humidity of up to 95% RH the capacitance of the sensors increased by 540 times and resistance decreased by 450 times with respect to humidity conditions of 50% RH.It was found that the sensor with a thinner semiconducting film (330 nm) was more sensitive than the sensor with a thicker film (400 nm).The sensitivity was improved when the sensor was used at a lower frequency as compared with a high frequency.It is assumed that the humidity response of the sensors is associated with absorption of water vapors and doping of water molecules in the semiconductor blend layer.This had been proven by simulation of the capacitance-humidity relationship.  相似文献   

4.
Because of its high activity and selectivity toward the reduction of hydrogen peroxide and oxygen, Prussian blue (PB) is usually considered as an “artificial enzyme peroxidase” and has been extensively used in the construction of electrochemical biosensors. In this study, we report on the construction of amperometric biosensors via grafting PB nanoparticles on the polymeric matrix of multiwalled carbon nanotubes (MWCNTs) and poly(4‐vinylpyridine) (PVP). The MWCNT/PVP/PB composite films were synthesized by casting films of MWCNTs wrapped with PVP on gold electrodes followed by electrochemical deposition of PB on the MWCNT/PVP matrix. The electrode modified with the MWCNT/PVP/PB composite film shows prominent electrocatalytic activity toward the reduction of hydrogen peroxide, which can be explained by the remarkable synergistic effect of the MWCNTs and PB. Therefore, fast amperometric response of this sensor to hydrogen peroxide was observed with a detection sensitivity of 1.3 μA μM –1 of H2O2 per square centimeter area and a detection limit of 25 nM . These results are much better than those reported for PB‐based amperometric sensors. In addition, a glucose biosensor fabricated by casting an additional glucose oxidase (GOD) containing Nafion film above the MWCNT/PVP/PB composite film shows promise for the sensitive and fast detection of glucose. The observed high stability, high sensitivity, and high reproducibility of the MWCNT/PVP/PB composite films make them promising for the reliable and durable detection of hydrogen peroxide and glucose.  相似文献   

5.
A high-speed capacitive humidity sensor with on-chip thermal reset   总被引:10,自引:0,他引:10  
This paper reports a high-speed capacitive humidity sensor integrated on a polysilicon heater. A response time of 1.0 s and a sensitivity of 30.0 fF/%RH have been obtained. High speed is achieved using multiple polyimide columns having diameters of a few microns and allowing moisture to diffuse into them circumferentially. Using structures that eliminate the air-gap capacitance between the columns, the simulated sensor output drifts by only 1% when the relative dielectric constant in the air region changes from 1 to 10. A polysilicon heater is used to measure relative humidity levels >80% RH. An accuracy of ±3% RH has been obtained using this method, with measurement errors of ±0.5°C and ±2% RH in temperature and relative humidity, respectively. The heater also reduces the recovery time after wetting, enables the sensor to recover from contamination and aging, and allows the sensing film to be reset on demand during self-test protocols  相似文献   

6.
复合钒钛酸干凝胶薄膜的湿敏特性研究   总被引:1,自引:0,他引:1  
采用sol-gel法制备了复合钒钛酸干凝胶(H2V10Ti2O30-y·nH2O)薄膜,并对其湿敏特性进行了研究。结果表明:该薄膜为层状结构。用此薄膜制备的湿敏元件,在RH为11%~95%的范围内,感湿特性曲线线性好,其响应、恢复时间分别为5s和20s,湿滞为RH2%,感湿温度系数为RH0.45%/℃,并具有良好的稳定性。H2V10Ti2O30-y·nH2O干凝胶薄膜湿敏元件的灵敏度和湿滞均优于复合钒酸(H2V12O31-y·nH2O)干凝胶薄膜湿敏元件。  相似文献   

7.
采用射频反应磁控溅射方法制备了氧化钨/多壁碳纳米管(WO3/MWCNTs)薄膜材料,并在此基础上研制NO2气敏元件.采用X射线衍射仪(XRD)、X光电子能谱仪(XPS)、扫描电子显微镜(SEM)来研究WO3/MWCNTs材料的表面形貌、表面化学状态、表面化学元素等材料特性.研究结果表明,MWCNTs已经掺杂进WO3材料,合成的WO3/MWCNTs气敏元件表现出对NO2气体有较高的灵敏度和较好的响应-恢复特性,并解释了该元件的工作机理.  相似文献   

8.
报道了采用标准CMOS工艺制作的格栅型上电极的电容型湿度传感器,采用高分子材料聚酰亚胺作为感湿介质,铝作为金属电极.对该湿度传感器的器件结构、制作工艺和传感器特性,如灵敏度、湿滞以及响应时间等进行了讨论.测试结果表明,在12%~92%的湿度范围内,电容一相对湿度曲线具有良好的线性度,灵敏度为0.9 pF/RH,响应时间...  相似文献   

9.
研究了基于聚酰亚胺(PI)湿敏薄膜的分布式光纤Bragg光栅(FBG)湿度传感器。传感器利用PI薄膜湿膨胀效应,将湿应变作用于Bragg栅区,从而改变光纤FBG湿度传感器中心波长的原理,实现了对26-98%RH范围内环境相对湿度的监测。通过改进PI湿敏薄膜的制备及涂覆工艺,有效提高了FBG湿度传感器性能,并采取了相应温...  相似文献   

10.
In this paper, we report a novel approach to study the potential use of multi-walled carbon naotubes (MWCNTs)–alumina (Al2O3) composite for heat sensing applications. This is achieved by optimizing the temperature coefficient of resistance (TCR) and thermal hysteresis of the composite. The composites were developed by uniform dispersion of MWCNTs in alumina in different concentrations following sol‐gel route. MWCNT loading in the alumina was found to be very effective to control the TCR as well as the hysteresis loss. The room temperature TCR versus MWCNTs concentration plot first shows an increasing trend with increase of MWCNTs concentration in the composite and reaches a threshold followed by drop in TCR. The maximum value of TCR that has been achieved is −0.56%/°C for 4 wt% MWCNTs content and is found to be ~1.5 times higher than the conventional metals and semiconductors. The hysteresis loss was found to decrease gradually to almost zero from 5 wt% onwards. The TCR and hysteresis variation is correlated with MWCNTs concentration dependent Raman, FESEM, EDS studies in the composite and there is a fair agreement in support of the observations.  相似文献   

11.
基于倾斜光纤光栅的相对湿度传感器   总被引:4,自引:2,他引:2  
提出了一种基于倾斜光纤光栅(TFBG)的包层上覆盖着聚乙烯醇(PVA)的空气相对湿度传感器,成功实现了对相对湿度在20~98%RH范围内的监测。研究发现,TFBG的透射功率在20~74%RH和74~98%RH2个相对湿度区域内分别呈现不同的线性变化,敏感度分别为2.52 dBm/%RH和14.95 dBm/%RH,并且在高湿度区有更高的敏感性。  相似文献   

12.
A new humidity microsensor using barium titanate thin film in the metal-insulator-semiconductor (MIS) structure has been developed. These devices have capacitances sensitive to changes of relative humidity (RH), with a sensitivity of 300-percent change of capacitance corresponding to a humidity change from 27 to 90-percent RH at a testing frequency Of 1 MHz. The capacitance-voltage (CV) and current-voltage (I-V) characteristics for various relative humidities are presented. Temperature and frequency effects on sensor performance are also presented.  相似文献   

13.
A relative humidity (RH) sensor based on tilted fiber Bragg grating (TFBG) is proposed by utilizing polyvinyl alcohol (PVA) as the sensitive cladding film. RH increasing in the PVA coating will result in reduction of refractive index. Due to the TFBG's sensitivity to ambient refractive index, the spectral properties of PVA-coated TFBG are modified under exposure to different ambient humidity levels ranging from 20% to 98% RH. The transmission power of TFBG has different linear behaviors for two different humidity ranges (20%–74% RH and 74%–98% RH), and the sensitivity for each humidity range reaches as high as 2.52 and 14.947 dBm/%RH, respectively. Combining the advantages of optical fiber grating and PVA as a smart material, this design involves simple configuration, low cost, compactness, a small degree of hysteresis, stability, and wide dynamic sensing range as well. Therefore, the sensor could be applied in real-time RH monitoring for normal as well as extremely humid environments.   相似文献   

14.
利用MEMS技术 ,对一种新型CMOS湿度传感器进行理论分析、模拟以及结果讨论。该湿度传感器采用标准CMOS工艺制造 ,采用梳状铝电极结构、梳状多晶硅加热结构 ,衬底接地 ,感湿介质采用聚酰亚胺 ,利用商业软件Coventor进行模拟绘制出敏感电容与相对湿度的曲线图。接口电路采用开关电容电路 ,输出可测电压信号 ,利用Microsim公司的Pspice模拟电路得到相对湿度与输出电压曲线关系  相似文献   

15.
The work studies a micro humidity sensor integrated with a seven-stage ring oscillator circuit-on-a-chip fabricated by the commercial 0.35 μm complementary metal oxide semiconductor (CMOS) process and a post-process. The structure of the humidity sensor consists of interdigitated electrodes and a sensing film. The sensing film is cobalt oxide nanosheet that is prepared by a precipitation-oxidation method. The sensor, which is a capacitive type, changes in capacitance when the sensing film adsorbs or desorbs water vapor. The ring oscillator circuit is employed to convert the capacitance of the sensor into the oscillation frequency output. The post-process of the sensor includes etching the sacrificial oxide layer and coating the sensing film on the interdigitated electrodes.  相似文献   

16.
A resistive-type relative humidity (RH) sensor based on vanadium complex (VO2(3-f[)) film is reported in this study. Gold electrodes were deposited on the glass substrates in a co-planar structure. A thin film of vanadium complex was coated as a humidity-sensing material on the top of the pre-patterned electrodes. The humidity-sensing principle of the sensor was based on the conductivity change of coated sensing element upon adsorption/desorption of water vapor. The resistance of the humidity sensor measured at 1 kHz decreased linearly with increasing the humidity in the range of 35%-70% RH. The overall resistance of the sensor decreases 11 times. An equivalent circuit for the VO2(3-fl) based resistive-type humidity sensor was developed. The properties of the sensor studied in this work make it beneficial for use in the instruments for environmental monitoring of humidity.  相似文献   

17.
利用氩离子束溅射技术,分别在SiO2/Si衬底上淀积了0.5 mm、1 mm和2 mm的Ba1-xLaxNbyTi1–yO3薄膜,并探讨了薄膜厚度对MIS电容湿敏特性的影响以及薄膜厚度对薄膜电阻的光敏和热敏特性的影响。实验结果表明:0.5 mm膜厚的MIS电容传感器具有比2 mm膜厚的MIS电容传感器高9倍的湿敏灵敏度。用孔隙率和孔径分布物理模型分析得出,薄膜越薄,膜的孔隙率越高,器件的湿敏灵敏度越高。反之,薄膜越厚,光吸收越强,薄膜电阻的光敏灵敏度越高;但薄膜厚度对薄膜电阻热敏特性的影响甚微,敏感机理与薄膜的微观结构可解释这些现象。  相似文献   

18.
乐甫(Love)波其质点振动方向垂直于传播方向,同时又平行于基片表面,在基片法线方向上无振动分量。因此当基于Love波的电子器件在接触液体时Love波能量损耗很少,因而乐甫波声表面波(SAW)传感器主要用于液相检测。在石英上表面及在其上面淀积的SiO2薄膜中激发、传播的乐甫波对SiO2薄膜质量的变化很敏感,因此该文研究了基于乐甫波的湿度传感器感知气体环境的湿度含量。该文乐甫波湿度传感器采用42.75°Y-旋转切割石英基片,传播方向为[0°,132.75°,90°]。吸湿膜采用APCVD制作的多孔SiO2薄膜,此类膜比PECVD制作的SiO2膜疏松,吸湿、脱湿迅速。传感器灵敏度为62kHz/%RH,最大湿滞约3%,测得的湿敏特性、迟滞特性表明,Love波SAW湿度传感器线性度较好,实验验证了该结构具有很好的气体测试前景。  相似文献   

19.
A novel optical fiber sensor with a U-shaped micro-groove structure ablated by femtosecond laser on single-mode fiber for measuring air relative humidity (RH) is reported in this paper. In order to improve the accuracy of sensor, a graphene oxide (GO)/polyvinyl alcohol (PVA) composite film is coated on the surface of micro-groove structure. In the U-shaped micro-groove structure, the remaining core and micro-cavity in the micro-groove make up two major optical propagation paths, forming a Mach-Zehnder interferometer (MZI). The sensor has a good linear response within the RH range of 30%—85%, and the maximum sensitivity can reach 0.638 1 nm/%RH. The effect of temperature on the overall performance of the humidity sensor is also investigated. As a new type of all-fiber device, the sensor shows excellent sensitivity and stability.  相似文献   

20.
AC driven inorganic electroluminescence (EL) of the carbon nanotube (CNT)-polymer/phosphor composite was fabricated to investigate the effect of the critical percolation threshold by CNT concentration on EL performance. In order to control the appropriate CNT condition in EL device, CNTs were shortened by cryogenic crushing and purified by thermal treatment. Among various CNT concentrations in the composite film, the critical percolation threshold can be found to be 0.0925 wt.% by fitting conductivity data of the composite film. Near the critical percolation threshold of a CNT concentration, the EL performances of the composite EL were greatly increased compared to the reference EL. The tunneling barrier thickness at the ZnS–CuxS contact could become thin to induce more charge carrier tunneling into ZnS host lattice by the local field enhancement of CNTs, resulting in increased electron–hole recombination to produce more light emission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号