首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
基于COMSOL软件的光学模块和半导体模块,从球缺比例、直径、正电极接触面积三个几何设计方面对球硅电池进行了仿真分析;通过对比反向饱和电流密度和理想因子,发现球硅半径越小、球缺比例越小、正电极相对接触面积越大,电池的电学特性越好;分析了不同直径球硅电池的几何特征与其光电参数之间的关联性,发现其与传统平面硅太阳电池存在显著差异。研究结果可为制作高效率低成本柔性球硅太阳电池提供理论指导。  相似文献   

2.
为探索以菲涅耳透镜为聚光器的聚光光伏模组中,多结电池中心局部高辐射功率对短路电流的影响,测量菲涅耳透镜的高亮度光斑直径,并据此分别测试室内不同局部光照面积下和户外不同尺寸透镜下的GaInP/GaInAs/Ge三结电池的短路电流,利用电路网络模型分析实验结果。结果表明,短路电流与局部聚光的面积无关;小尺寸菲涅耳透镜聚焦下,沿光轴电流与辐射功率同步变化;透镜尺寸增大到一定程度,电池中心局部承受过高辐射功率,电流受峰值隧穿电流限制,宏观体现为焦平面处短路电流下降。电池放置在焦平面两侧,均可缓解局部高辐射功率,短路电流最高提升 8.0%。  相似文献   

3.
甄珍珍  杨瑞霞  王静辉 《半导体技术》2012,37(5):371-374,389
针对GaN基发光二极管中p-GaN与透明导电薄膜ITO之间的接触进行研究,尝试找出透明导电层ITO的优化制程条件。将在不同氧流量、ITO厚度及退火温度下制备的透明电极ITO薄膜应用于GaN基发光二极管,来增加电流扩展,减小ITO与p-GaN欧姆接触电阻,降低LED工作电压及提高透过率、增强LED发光亮度。将ITO薄膜应用于218μm×363μm GaN基发光二极管LED,分析其在20 mA工作电流条件下正向电压和光输出功率的变化,在优化条件下制得的蓝光LED在直流电流20 mA下的正向电压3.23 V,光输出效率为23.25 mW。  相似文献   

4.
A high‐resolution elastically stretchable microelectrode array (SMEA) for interfacing with neural tissue is described. The SMEA consists of an elastomeric substrate, such as poly(dimethylsiloxane) (PDMS), elastically stretchable gold conductors, and an electrically insulating encapsulating layer in which contact holes are opened. We demonstrate the feasibility of producing contact holes with 40 μm × 40 μm openings, show why the adhesion of the encapsulation layer to the substrate is weakened during contact hole fabrication, and provide remedies. These improvements result in greatly increased fabrication yield and reproducibility. An SMEA with 28 microelectrodes was fabricated. The contact holes (100 μm × 100 μm) in the encapsulation layer are only ~10% the size of the previous generation, allowing a larger number of microelectrodes per unit area, thus affording the capability to interface with a smaller neural population per electrode. This new SMEA is used to record spontaneous and evoked activity in organotypic hippocampal tissue slices at 0% strain before stretching, at 5% and 10% equibiaxial strain, and again at 0% strain after relaxation. Stimulus–response curves at each strain level are measured. The SMEA shows excellent biocompatibility for at least two weeks.  相似文献   

5.
Hierarchical zinc oxide (ZnO) quasi-spheres consisting of nanoparticles with diameter of about 20 nm were synthesized via a one-pot reaction. The size of ZnO quasi-spheres is easily tunable from 80 nm to 3 μm by varying the type of zinc source and its concentration. The three samples 1-3 with the diameter of 80-180 nm, 300-600 nm and 1.2-2.9 μm were selected for fabricating dyesensitized solar cells (DSSCs) and their photovoltaic properties were measured. The results demonstrate that DSSCs fabricated by sample 2 with the diameter within the wavelength of visible light obtain the highest short-circuit current density and over light conversion efficiency, due to resonant scattering increasing the photon absorption.  相似文献   

6.
刘迪  宁永强  秦莉  张金龙  张星  刘云  王立军 《中国激光》2012,39(5):502005-32
为了在制作垂直腔面发射激光器(VCSEL)时选择合适的氧化孔径尺寸,以获得较好的光束质量和较高的输出功率,对具有不同氧化孔径的单管器件的热特性进行了实验研究。通过控制氧化时间,制作了氧化孔径分别为415、386、316μm的单管器件,台面直径和P型接触电极直径均为450μm和400μm。针对3种器件在室温连续工作条件下不同的输出特性,对它们的热阻进行了实验测量,发现氧化孔径越小时器件热阻越大。通过对比电流、波长及温度的关系,得到了由电流引起的自热效应给3种器件带来的温升情况。注入电流为1A时,氧化孔径为415μm的器件温度为32.4℃,氧化孔径为386μm的器件温度为35.2℃,氧化孔径为316μm时,器件的温度高达76.4℃。  相似文献   

7.
The morphology of CdS-indium tin oxide (ITO) and CdS-ZnO bilayers has been investigated by atomic force microscopy in order to obtain a better understanding of their behaviour as window coatings in solar cells. Chemical bath-deposited CdS layers with t hicknesses ranging between 0.05 and 0.12 μm and RF-magnetron-sputtered ITO and ZnO films have been independently analysed before the study of the combined materials. A CdS thickness below 0.1 μm has been found to be optimal for avoiding the adhesi on of large solution particles from the chemical bath, and thus for achieving a homogeneous CdS layer useful as a polycrystalline substrate to improve the transparent conductive oxide (TCO) grain size.  相似文献   

8.
在标准CMOS工艺下,设计了一种与CMOS工艺兼容的片上集成太阳能电池阵列,通过从外部环境收集光能为UHF射频识别(RFID)标签供电。采用SMIC 0.18μm CMOS工艺制备出太阳能电池阵列,其面积约为0.2mm2;在AM1.5、1 000W/m2、25℃标准测试条件下,测得最大输出功率为10.212μW,短路电流和开路电压分别为28.763μA和0.458V,光电转换效率为5.106%。相对于常规Si太阳能电池复杂的制造工艺,本文太阳能电池阵列与CMOS工艺相兼容,可与电路系统集成从而实现片上供电。  相似文献   

9.
为了实现高亮度有机电致发光器件(OLED)及其尺寸的微型化,采用接触式光刻技术,通过真空热蒸镀制备了具有不同掩膜版结构的OLED。器件的结构为玻璃衬底/ITO/LiF/空穴传输层(HTL,NPD)/发光层(EML,0.5-0.6vol%Rubrene:Alq3)/电子传输层(ETL,Alq3)/阴极,其中LiF作为绝缘层。分别制得发光面积为45μm×2mm的微细器件和直径为44μm的微小器件。实验研究了其光电特性,结果表明,4.5μm×2.0mm微细器件的最大电流密度为7A/cm2,为44μm微小器件的最大电流密度为40A/cm2。  相似文献   

10.
Integrated optical corner reflectors in III-V semiconductors are analyzed employing a finite-difference beam propagation method and propagating the beam in parallel with the etched semiconductor-air interface. For this choice of propagation direction, the effects of mirror roughness, rotation, and displacement of the mirror surface from its ideal position can be assessed very easily. The integrated reflector whose mode size is larger shows less dependence on the mirror displacement error. The loss due to mirror surface roughness depends weakly on the mode size and strongly on the mode polarization, being larger for the quasi-transverse-electric polarization. The loss due to rotational errors of the mirror surface is not a strong function of polarization, but increases as the waveguide width increases. However, for a rotation error smaller than 0.1 degrees , which should be achieved easily, the excess loss is smaller than 0.2 dB at 1.3 % mu m regardless of the waveguide width.<>  相似文献   

11.
A Schiff base ligand was employed to synthesise TiO2 nano-particles by a two-step sol–gel method. The effect of the ligand on purity, particle size, optical properties and photo-voltaic performance of dye-sensitised solar cells was investigated. Various concentrations of the ligand were applied and each sample was characterised. Changing the ligand content had an effective role on the optical and photo-voltaic properties of the final product. The obtained products were characterised through powder X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectra, energy-dispersive X-ray spectrometry and ultraviolet–visible spectroscopy.  相似文献   

12.
A quantitative model that explains the spectral response, internal quantum efficiency, total short-circuit current, open-circuit voltage, and efficiency of high-efficiency solar cells with textured front surface and Lambertian back-surface reflectors is presented. A comparison of the textured cell characteristics is made with those of planar cells, and the separate roles of the front surface reflection coefficient and internal quantum efficiency in enhancing the short-circuit current have been investigated. It is shown that, in the case of large diffusion lengths, almost all the contribution to the increase of spectral response on texturization is due to the reduced reflection coefficient whereas, for small diffusion lengths, there is a significant increase in internal quantum efficiency on texturization, especially in the region of higher wavelengths. However, there is a small decrease in open-circuit voltage for large diffusion lengths, whereas no significant change is observed for small diffusion lengths on texturization. Nevertheless, there is a net gain in power conversion efficiency which is larger for smaller diffusion lengths  相似文献   

13.
为了提高单晶硅薄膜太阳能电池短路电流密度和转换效率, 采用在单晶硅薄膜太阳能电池正背面分别集成硅介质光栅和铝金属光栅的方法, 并利用有限时域差分法软件仿真研究了两种光栅的周期、厚度、占空比对单晶硅薄膜太阳能电池短路电流密度和光转换效率的影响。结果表明, 通过优化可得当正背面光栅都处于最优值时(介质光栅占空比F=0.8、介质光栅周期P=0.632μm、介质光栅厚度hg=0.42μm; 金属光栅占空比F1=0.9、金属光栅周期P=0.632μm、金属光栅厚度hm=0.005μm), 短路电流密度可达35.15mA/cm2, 转换效率为43.35%;将最优光栅单晶硅薄膜太阳能电池与传统单晶硅薄膜太阳能电池对比, 无论是光程路径还是吸收效率, 光栅单晶硅薄膜太阳能电池都有显著的提高。这为以后制备高性能薄膜太阳能电池提供了理论指导。  相似文献   

14.
Based on an experimentally verified model, the effects of various parameters on the short-circuit current of the beta-voltaic cell are demonstrated. The parametric variables used include electron minority-carrier lifetime and resistivity in the substrate, substrate thickness, surface recombination velocity, Curie content and junction depth. Computed results indicate that with a nominal source curie content of 2·8 Ci/cm2, a short-circuit current of 80 μA/cm2 can be achieved when the substrate resistivity is greater than 0·5 Ωcm, substrate thickness greater than 180 μm and an electron lifetime greater than 10 μsec. An increase of current to 90 μA/cm2 is possible when the back contact is also irradiated by a similar source; under this condition the optimum substrate thickness is 125 μm. A reduction of the surface recombination velocity at the back contact to 104 cm/sec increases the optimum current to 114 μA/cm2 with a substrate of 75 μm in thickness.  相似文献   

15.
为了改善基于交叉增益调制效应的量子点半导体光放大器全光逻辑或非门的性能,研究了QD-SOA-XGM全光逻辑门的码型效应特性,用两个连“1”脉冲和单个“1”脉冲的峰值功率来衡量,即P30/P20。研究结果表明:第一级输入电流越小,逻辑或非门的性能越好,而第二级输入电流对或非门性能影响很小;在一定范围内,输入连续光功率越大、有源区长度越长、有源区宽度越宽、最大模式增益越大、损耗系数越小,或非门输出效果越好。  相似文献   

16.
High performance inverted polymer solar cell is demonstrated by introducing a nanostructured backscattering rear electrode, which is fabricated by embedding silver nanoparticle (NP) arrays into the MoO3 hole extraction layer. As verified by characterizing and simulating the electrical and optical properties, such a nanostructured rear electrode can achieve an improved cell performance by maintaining simultaneously high open-circuit voltage and fill factor values, while providing excellent short-circuit current enhancement through efficient backscattering-induced light trapping. A careful optimization of the nanostructured rear electrode can result in polymer solar cells with an enhanced power conversion efficiency of 7.21%, as compared to 6.26% of the reference cell with a flat electrode. It is noteworthy that the method described here offers a convenient and scalable way for inexpensive and high-performance polymer solar cell designs.  相似文献   

17.
介绍了高压微型砷化镓太阳电池的研究情况,研究了MOCVD砷化镓外延片的结构设计和制作,研究了高压微型砷化镓太阳电池串联结构设计和器件工艺的情况。研制的高压微型砷化镓太阳电池在1cm2面积内串联了118个电池单元,每个电池单元有效面积为500μm×400μm。在AMO光强下,开路电压大于80V,短路电流大于50μA。  相似文献   

18.
Numerical calculations have been made of the effect of grain size on the short-circuit current and the AM1 efficiency of polycrystalline thin-film GaAs and InP (2 µm thick) and silicon (25 µm thick) p-n junction solar cells. Junction solar cells are seen to be more efficient than Schottky-barrier cells, due to the higher dark current associated with Schottky diodes. GaAs shows the highest efficiency and both GaAs and InP attain 90 percent of their maximum efficiencies at a grain size of 10 µm, while silicon requires grain sizes of 200 µm to attain 90 percent of maximum efficiency. However, the deleterious effect of poor lifetimes and mobilities is less for silicon polycrystalline cells than for the direct-bandgap devices.  相似文献   

19.
A systematic study of semiconductor-insulator-semiconductor (SIS) solar cells has been undertaken on n-type silicon using spray-deposited indium-tin-oxide (ITO) for the window layer of the heterostructure. The optical and electrical characteristics of the ITO layer as well as the thickness of the I layer have been optimized to yield the following photovoltaic parameters on 0.5-Ω . cm n-Si:V_{OC} = 0.52V,J_{SC} = 31.5mA/cm2(adjusted for Ag grid area),FF= 0.70, and illuminated area η = 11.5 percent. The darkI-VandC-Vcharacteristics have also been evaluated to identify the mechanisms of barrier formation and current flow.  相似文献   

20.
Attention is focused on the deformation of electron wave functions due to an applied field in a quantum well (QW) neglecting the exciton effect. Compared to the electrooptic effect of bulk semiconductor, the theoretical refractive index variation in a QW structure due to this phenomenon is considerably larger at the wavelength corresponding to the energy gap between the first quantized energy levels in the conduction and valence bands. Since the absorption loss changes by the same mechanism, the appropriate wavelength region is estimated for larger index variation where the absorption loss is relatively smaller. The design of a related intersectional optical switch of a small size is discussed. A switch with a length of about 10 μm is achievable with an intersectional angle of more than 10° at a waveguide width of 1 μm. This optical switch is expected to be of high speed and is integrable monolithically with lasers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号