首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Two complexes [Eu2(2-TFMBA)6(2,2'-bipy)2].2H2O (1) and Eu2(2-TFMBA)6(1,10-phen)2 (2) (2-TFMBA=2-(Trifluoromethyl) benzoate; 2,2'-bipy=2,2'-bipyridine; 1,10-phen=1,10-phenanthroline) were synthesized by solvent method and determined by X-ray diffrac-tion analysis. Complex 1 crystallizes in monoclinic system with space group P21/c, whereas complex 2 crystallizes in triclinic system with space group P-1. Both are binuclear molecules with an inversion center. In complex 1, two center Eu3+ ions are linked together by four 2-TFMBA ligands in bidentate-bridging mode. Each Eu3+ion is eight-coordinated with six O atoms from five 2-TFMBA ligands and two N atoms from one 2,2'-bipy molecule. In complex 2, two center Eu3+ ions are linked together by four 2-TFMBA ligands in two modes, namely, bidentate-bridging and tridentate-bridging. Each Eu3+ ion is nine-coordinated with seven O atoms from five 2-TFMBA ligands and two N atoms from one 1,10-phen molecule. The two complexes both exhibited strong red fluorescence under ultraviolet light, and the 5D0→7Fj (j=0-4) transition emissions of Eu3+ ion were observed in their emission spectra.  相似文献   

2.
Novel red-emitting phosphors Sr2MgSi2O7:Eu3+ were prepared by gel-combustion method assisted by microwave. The phase struc-ture and luminescent properties of as-synthesized phosphors were investigated by XRD and fluorescence spectrophotometer, respectively. The results showed that the as-synthesized sample was Sr2MgSi2O7 with tetragonal crystal structure. The excitation spectrum of Sr2MgSi2O7:Eu3+ was composed of two major parts: one was the broad band between 200 and 350 nm, which belonged to the charge transfer of Eu3+-O2-; the other consisted of a series of sharp lines between 350 and 450 nm, ascribed to the f-f transition of Eu3+. The emission spec-trum consisted of two emission peaks at 593 and 616 nm, which was attributed to 5D0→7F1 and 5D0→7F2 of Eu3+, respectively. The concen-tration of Eu3+ (x) had great effect on the emission intensity of Sr2-xMgSi2O7:Eu3+x. When x varied in the range of 0.04-0.18, the intensity of emission peaks at 593 and 616 nm increased gradually with the concentration of Eu3+ increasing. It was interesting that no concentration quenching occurred. Moreover, the luminescent intensity could be greatly enhanced with incorporation of charge compensator Li+ ions.  相似文献   

3.
A series of red phosphors Eu3+-doped MMgP2O7(M=Ca,Sr,Ba) were synthesized by solid-state reaction method.X-ray powder diffraction(XRD) analysis confirmed the formation of pure CaMgP2O7,SrMgP2O7 and BaMgP2O7 phase.Photoluminescence spectra of MMgP2O7(M=Ca,Sr,Ba):Eu3+ phosphors showed a strong excitation peak at around 400 nm,which was coupled with the characteristic emission(350-400 nm) from UV light-emitting diode.The CaMgP2O7:Eu3+,SrMgP2O7:Eu3+ and BaMgP2O7:Eu3+ phosphors showed strong emission bands peaking at 612,593 and 587 nm,respectively.Due to the difference of the ion sizes between Ba2+(0.142 nm),Sr2+(0.126 nm),Ca2+(0.112 nm),Mg2+(0.072 nm) and Eu3+(0.107 nm),Eu3+ ions were expected to substitute for different sites in CaMgP2O7,SrMgP2O7 and BaMgP2O7 lattice.  相似文献   

4.
Long lasting blue-green-emitting Sr4Al14O25:Eu2+ phosphors were synthesized by solid-state reactions.The phosphors were investigated by X-ray diffraction(XRD) and fluorescence spectrophotometer.A pure phase of Sr4Al14O25:Eu2+ phosphor was obtained at 1250 °C.There are two different types of Eu emission centers in Sr4Al14O25:Eu2+ phosphor.The effects of the Eu2+ concentration and the reducing temperature on the distribution of Eu2+ among different sites were investigated.The energy transfer mechanism between two different emission centers was elucidated via the investigation of thermal damage influence on the phosphorescence spectra,that is,the energy emitted from an Eu1 emission center could be reabsorbed by an Eu2 emission center.  相似文献   

5.
ChlorosilicatecrystalmaterialM4 Si3O8Cl4 (M =Ba ,Sr ,Ca)isasuitablehostlatticeforluminescencematerials .Adivalenteuropiumactivatedstrontiumchlorosilicatephosphorisakindofgoodblue greenemissionphotoluminescencematerialunderUVexcita tion .Itsluminescencepropertiesandcrystalstructurehavebeenintensivelystudied[1~4 ] .Inthechlorosili catehost ,theluminescenceofEu2 consistsofa4f6 5d1- 4f7(8S7/2 )broad bandemission ,whichbe longstoelectric dipoleallowedtransitionandhasthepropertiesoflargeabso…  相似文献   

6.
The phosphor BaB8O13:Eu3+ were synthesized by solid-state reaction, and their luminescent properties were studied under 254 and 147 nm excitation. The excitation spectrum showed two broad bands in the range of 100-300 nm: one was the host lattice absorption with the maxima at 160 nm and the other was Ba-O absorption overlapped with the CT band of Eu3+, which indicated that the energy of the host lat-tice absorption could be efficiently transferred to the Eu3+. The overlapped bands were tended to separate when monitored by different wave-length, which indicated that at least two Ba2+ sites were available in BaB8O13. The emissions of Eu3+ (612 nm) and Eu2+ (405 nm) were both observed in the emission spectra of BaB8O13:Eu3+ under the excitation of either 254 or 147 nm. With the doping concentration of Eu3+ in-creasing, the 612 nm emission was enhanced while 405 nm emission was decreased under 254 nm excitation, which was due to the persistent energy transfer from Eu2+ to Eu3+. While under 147 nm excitation, the 612 nm emission was quenched and the 405 nm emission was en-hanced. It was concluded that the preferential excitation of Eu2+ under 147 nm excitation was one of the reasons for this facts.  相似文献   

7.
La0.75NbO4:Eu3+0.25 and La0.65NbO4:Eu3+0.25,Bi3+0.10 phosphors were synthesized by solid-state reaction method,and their photoluminescence properties were discussed in detail.With the increased incorporation of the co-activator Bi3+,the charge transfer(CT) bands of Nb5+→O2-and Eu3+→O2-(-280 nm) weakened and a new and significant broad band Bi3+-O2-(-330 nm) appeared,while the peaks at 395 and 466 nm assigned to f-f transitions of Eu3+ was slightly changed.Compared with the commercial phosphor Y2O2S:0.05Eu3+...  相似文献   

8.
Ce3+,Eu3+ and Tb3+ singly doped and Ce3+/Eu3+ and Ce3+/Tb3+ co-doped zinc phosphate glasses were prepared by sintering P2O5,ZnO,Ce2(C2O4)3·10H2O and Eu2O3/Tb4O7 mixtures at 1200 °C in the air for 2 h and then annealing at 450 °C for 10 h.The obtained glasses were homogeneous and transparent.The glasses without Ce3+ were colorless and those with Ce3+ showed slightly yellow.The singly doped glasses showed strong emissions and excitations from doped trivalent rare earth ions.Strong energy transfer from Ce3+ to Tb3+ was observed for Ce3+/Tb3+ coped samples.There were also some very weak evidences for the energy transfer from Ce3+ to Eu3+.  相似文献   

9.
S100 beta is a member of a group of low-molecular weight acidic calcium binding proteins widely distributed in the vertebrate nervous system containing two helix-loop-helix calcium binding motifs (sites I and II). In addition, S100 beta also has auxiliary Zn2+ binding sites that are distinct from the Ca2+ binding sites. Luminescence spectroscopy using Eu3+ and Tb3+ as spectroscopic probes for Ca2+ is used to characterize the Ca2+ binding sites of this protein. Eu3+-bound S100 beta shows two distinct Eu3+ binding environments from both the excitation spectrum and Eu3+ excited state lifetimes. Eu3+ bound to the classical EF hand site II has a Kd of 660 +/- 20 nM, whereas the dissociation constant for the pseudo-EF hand site I is significantly weaker. Lifetimes in H2O and D2O lead to the finding that there are four water molecules coordinated to the Eu3+ in the weakly binding site I and two water molecules to the tightly binding site II. Site II in S100 beta expectedly is very similar to high-affinity Ln3+ binding domains I and II in calmodulin. Eu3+ luminescence experiments with Zn2+-loaded S100 beta show that the lifetime for Eu3+ in site I in Zn2+-loaded S100 beta is significantly different than that in the absence of Zn2+. Tyrosine-17-sensitized Tb3+ luminescence experiments indicate that the Tb3+ occupying the proximal weaker binding site I is sensitized, whereas Tb3+ in site II is not. The distance between sites I and II (15.0 +/- 0.4 A) in S100 beta was determined from Forster-type energy transfer in D2O solutions containing bound Eu3+ donor and Nd3+ acceptor ions. For Zn2+-S100 beta, the intersite distance is reduced to 13 +/- 0.3 A. Location of histidine-15 close to pseudo-EF site I suggests that Zn2+ binding likely changes the conformation of this site, causing a reduction of the intersite distance by approximately 2 A.  相似文献   

10.
Gold nanoparticles dispersed Y2O3 films were prepared through a sol-gel method by using yttrium acetate and Au nanoparticles colloid as precursors. The films were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and UV-VIS absorption spectra. XRD patterns and TEM images of Y2O3 + Au films give the same resuits on structure and particle size as that of pure Y2O3 films. The surface plasma resonance (SPR) of Au nanoparticles in Y2O3 + Au film was observed around 550 nm in the absorption spectrum and its position shifts to red with increasing annealing temperature is caused by the increase of dielectric constant of Y2O3 matrix and the size of Au nanoparticles. The second and third order nonlinear optical effects of Y2O3 + Au films were also observed. The photoluminescent properties of Y2O3 : Eu + Au films were investigated and results indicate that there exist an energy transfer from Eu^3 + to Au nanoparticles and this energy transfer decreases the emission of Eu^3 + in Y2O3 : Eu + Au film.  相似文献   

11.
Y2O2S:Eu3+,Mg2+,Ti4+ nanorods were prepared by a solvothermal procedure.Rod-like Y(OH)3 was firstly synthesized by hydrothermal method to serve as the precursor.Y2O2S:Eu3+,Mg2+,Ti4+ powders were obtained by calcinating the precursor at CS2 atmosphere.The Y2O2S:Eu3+,Mg2+,Ti4+ phosphor with diameters of 30-50 nm and lengths up to 200-400 nm inherited the rod-like shape from the precursor after calcined at CS2 atmosphere.The Y2O2S:Eu3+,Mg2+,Ti4+ nanorods showed hexagonal pure phase,good dispersion and exhibite...  相似文献   

12.
本文合成了铕-联吡啶的二元配合物Eu(bpy)2(NO3)3(H2O)2,用元素分析、红外及紫外光谱对配合物进行了表征.采用循环伏安法,研究了用Nafion将Eu(bpy)2(NO3)3(H2O)2修饰于金电极上的电化学发光行为.讨论了介质、pH对该体系电化学发光性质的影响,推测了Eu(bpy)2(NO3)3(H2O)2电化学发光的机理.结果表明:在没有共反应试剂存在的条件下,Eu(bpy)2(NO3)3(H2O)2在pH 8.0的硼砂缓冲溶液中可以产生较强的电化学发光,其发光体可能为Eu*(bpy)2(NO3)3(H2O)2.  相似文献   

13.
以草酸钇铕(Y2(C2O4)3:Eu3+)为前驱体,采用复合熔盐(NaCl+S+Na2CO3)协助焙烧法合成Y2O3:E.u3+红色荧光粉.利用XRD、SEM、光谱分析等测试和分析荧光粉粒径、颗粒形貌以及发光性能.主要考察复合熔盐配比、用量以及焙烧温度和时间对Y2O3:Eu3+荧光粉发光性能的影响.结果表明,NaCl在...  相似文献   

14.
Divalent europium activated tristrontium dialuminum hexaoxide phosphor, (Sr1-xEux)3Al2O6, was obtained by solid state reaction. Crystal structure and luminescence properties of synthesized (Sr1-xEux)3Al2O6 were investigated. The major excitation band of (Sr1-xEux)3Al2O6 located in blue light region, the photoluminescence spectrum showed red light emission peaked at 618 nm which could be attributed to the d-f transition of the Eu2+. The influence of Ca2+ substitution for Sr2+ on structural and luminescence properties of Eu2+ doped Sr3Al2O6 was also studied. The photoluminescence peak position of (Sr1-yCay)2.94Eu0.06Al2O6 varied from 618 to 655 nm with increasing y value. The reason for redshift in the emission band of (Sr1-yCay)2.94Eu0.06Al2O6 phosphor was also discussed.  相似文献   

15.
研究了Eu2+、Dy3+共激活的SrAl2O4体系的发光性能和能量传输。结果表明,Dy3+、Eu2+共存时,Eu2+的发光强度远远大于无Dy3+时的发光强度,证明Dy3+对Eu2+的发光有敏化作用。Dy→Eu2+能量传输的方式为籍助于载流子的能量输运。  相似文献   

16.
Sinceaza crownethershowsspecialcoordinationpropertiestotransitionmetalandheavymetalions[1,2 ] ,therearemanyreportsofthecomplexesinhost guestchemistry ,molecularrecognition[3 ,4] andionophoreinmembranetransportation[5] ,butthereislittlereportontheirrareearthscomplexesandthefluorescenceaboutthecomplexes[6] ,andthefluorescenceintensityoftheircomplexesarenotverystrong .Weinsetbenzoylgroupintothemacrocycle ,expectingthatitsrareearthscomplexeshavebetterfluorescenceproperties .Inthispaperthesynthesis…  相似文献   

17.
Photoluminescence properties of Sr 2.5 Dy 1/3-x Eu x V 2 O 8(x=0,0.06,0.12,0.18,0.24,0.33) were investigated.The excitation spectra included a broad band in the short wavelength region and several sharp lines in the longer wavelength region,and the spectral origin were discussed.The emission spectra were measured in two different exciting ways,i.e.,exciting the VO 4 group at 270 nm and the Eu 3+ ion at 398 nm,respectively,and the energy transferring process was reasonably suggested.Furthermore,multi-color emission could be achieved in Sr 2.5 Dy 1/3-x Eu x V 2 O 8,indicating that the studied samples had potential applications in the white light emitting diodes.Further investigation showed that reducing the concentration of Eu 3+ and Dy 3+ and introducing Bi 3+ as a sensitizer ion greatly enhanced the emission intensity.  相似文献   

18.
The effects of strontium aluminates of SrAl2O4:Eu2+,Dy3+(SAED) and boron-modified SAED (BSAED) phases synthesized from a sol-gel process on thermoluminescence (TL) along with their afterglow properties were systematically investigated with thermal activation in the different atmospheres. The result showed that the addition of boron and the reduction routes of Eu3+to Eu2+ in SrAl2O4:Dy3+were related to phosphorescent decay properties. The aid of Dy3+to induce the hole-trapping effect required both SAED and BSAED to be heated at 1300°C under the H2/N2(5%:95%) atmosphere. However, the trapping behavior of the reductions of SAED in nitrogen was similar to the compound without Dy3+co-doping SrAl2O4:Eu2+ (SAE) in H2/N2(5%:95%). BSAED showed deeper traps in situ compared to SAED which contained no boron, and this led to the better afterglow properties of BSAED than those of SAED. The afterglow spectrum of BSAED showed two peaks at 400±1 nm and 485±1 nm, which were two individuals composed and contributed from different depths of traps at 0.57 and 0.76eV, accordingly. The depth of the traps was calculated from the Hoogenstraaten’s plot of glow curves. The calculations for SAED and SAE were at around 0.43 and 0.18eV, respectively.  相似文献   

19.
Eu3+-doped (Y,Gd)NbO4 phosphor was synthesized by solid-state reaction for possible application in cold cathode fluorescent lamps. A broad absorption band with peak maximum at 272 nm was observed which was due to the charge transfer between Eu3+ ions and neighboring oxygen anions. A deep red emission at the peak wavelength of 612 nm was observed which could be attributed to the 5D0→7F2 transition in Eu3+ ions. The highest luminance for Y1-x-yGdyNbO4:Eux3+ under 254 nm excitation was achieved at Eu3+ concentration of 18 mol.% (x=0.18) and Gd3+ concentration of 8.2 mol.% (y=0.082). The luminance of Y0.738Gd0.082NbO4:Eu3+0.18 was higher than that of a typical commercial phosphor Y2O3:Eu3+ and the CIE chromaticity coordinate was (0.6490, 0.3506), which was deeper than that of Y2O3:Eu3+. The particle size of the synthesized phosphors was controlled by the NaCl flux and particle size as high as 8 μm with uniform size distribution of particles was obtained.  相似文献   

20.
The long persistent phosphors Sr3Al2O6:Eu0.012+,Dy0.02-x3+,Hox3+ (x=0, 0.01, 0.02) were prepared by a high temperature solid state reaction. All samples showed a broad band emission peaking at ~510 nm, which could be ascribed to Eu2+ transition between 4f65d1 and 4f7 electron configurations. With the increase of substitution of Ho3+ ions for the Dy3+ ions in the as-prepared phosphors Sr3Al2O6:Eu0.012+,Dy0.02-x3+,Hox3+ (x=0, 0.01, 0.02), the initial intensity of the afterglow obviously decreased. From the thermoluminescence (TL) curves of the samples, we concluded that codoped Ho3+ ions led to a decline of the trap depth and redistribution of the trap. This may be responsible for the change of afterglow of Sr3Al2O6:Eu0.012+,Dy0.02-x3+,Hox3+ (x=0, 0.01, 0.02).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号