首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
The effect of the base pressure on the incorporation of oxygen into reactively magnetron-sputtered metal-nitride films has been investigated. A UHV sputtering system with a base pressure of less than 10−6 Pa was used to examine the relationship between a deliberately introduced background pressure of oxygen and a measured oxygen content in the sputter-deposited TiN films. The results showed that with an oxygen partial pressure of 10−4 Pa, the deposited TiN was found to include 10-20 at.% of oxygen when measured by the technique of X-ray photoelectron spectroscopy (XPS). When no oxygen was admitted into the system, no trace of oxygen could be detected in the deposited TiN films. The incorporation mechanism is discussed in terms of the coverage-dependent sticking probabilities of O2 and N2 on a Ti metal surface.  相似文献   

2.
TiN films have many features, such as high wear resistance, high corrosion resistance and good oxidization resistance. With the technology of vacuum arc deposition and high current density nitrogen ion beam dynamic mixing implantation (DMI), the TiN film with a thickness of 33 μm and adhesion 58 N is synthesized on hard alloy and high-speed steel substrates. X-ray diffraction has been used to examine the crystal structure of the films. The results showed that the main phases presented in DMI films are TiN and Ti2N and that the films revealed random growth. Cross-sectional scanning electron microscopy revealed the dense morphology and the thickness of the films. Micro-hardness tests showed that the average hardness of the films was about 2500 HK. Electrochemical experimental results indicated that DMI-TiN film had excellent corrosion resistance both in 3% NaCl solution and in 0.5 Mol H2SO4 solution.  相似文献   

3.
Epitaxial SrTiO3(STO)/BaTiO3(BTO) artificial superlattices have been grown on TiN buffered Si (001) substrates by pulsed laser deposition method and the effects of stacking periodicity and processing oxygen partial pressure on their crystallinity and dielectric properties were studied. The crystal orientation, epitaxy nature, and microstructure of STO/BTO superlattices were investigated using X-ray diffraction and transmission electron microscopy. The TiN buffer layer and superlattice thin films were grown with cube-on-cube epitaxial orientation relationship of [110](001)films∣∣[110](001)TiN∣∣[110](001)Si. The c-axis lattice parameter of the STO/BTO superlattice decreased from 0.412 nm to 0.406 nm with increasing oxygen partial pressure and the dielectric constants, measured at the frequency of 100 kHz at room temperature, of the superlattices with 2 nm/2 nm periodicity increased from 312 at 1 × 10− 5 Torr to 596 at 1 × 10− 3 Torr. The dielectric constants of superlattices grown at oxygen partial pressure of 1 × 10− 3 Torr increased from 264 to 678 with decreasing periodicity of the superlattices from 10 nm/10 nm to 1 nm/1 nm.  相似文献   

4.
Thin HfO2 films were grown as high-k dielectrics for Metal-Insulator-Metal applications by Atomic Vapor Deposition on 8 inch TiN/Si substrates using pure tetrakis(ethylmethylamido)hafnium precursor. Influence of deposition temperature (320-400 °C) and process pressure (2-10 mbar) on the structural and electrical properties of HfO2 was investigated. X-ray diffraction analysis showed that HfO2 layers, grown at 320 °C were amorphous, while at 400 °C the films crystallized in cubic phase. Electrical properties, such as capacitance density, capacitance-voltage linearity, dielectric constant, leakage current density and breakdown voltage are also affected by the deposition temperature. Finally, TiN/HfO2/TiN stacks, integrated in the Back-End-of-Line process, possess 3 times higher capacitance density compared to standard TiN/Si3N4/TiN capacitors. Good step coverage (> 90%) is achieved on structured wafers with aspect ratio of 2 when HfO2 layers are deposited at 320 °C and 4 mbar.  相似文献   

5.
Ta/Ta-N multilayer has been developed to control temperature coefficient of resistance (TCR) in a thin-film embedded resistor with the incorporation of Ta layer (+ TCR) inserted into Ta-N layers (− TCR). Electrical and structural properties of sputtered Ta, Ta-N and the multilayer films were investigated. The stable resistivity value of 0.0065 Ω·cm in β-Ta film was obtained, and phase change from fcc-TaN to orthorhombic Ta3N5 in Ta-N films was observed at nitrogen partial pressure of 22%. The multilayer of Si/Ta(60 nm)/Ta3N5(104 nm)/Ta(60 nm)/Ta3N5(104 nm) showed TCR value of − 284 ppm/K, where TCR of Ta was − 183 ppm/K and that of Ta3N5 was − 3193 ppm/K.  相似文献   

6.
This work describes the preparation of titanium nitride (TiN) films on Si (111) substrates by atmospheric pressure halide chemical vapor deposition (AP-HCVD). Various TiN films were obtained by exploiting TiCl4 + NH3 gas chemistry with flow ratios [NH3]/[TiCl4] from 0.2 to 1.4, and deposition temperatures (Td) from 600 to 900 °C. When Td = 800 °C gold-colored films with electrical resistivities of under 100 μΩ cm were formed at almost all of the investigated [NH3]/[TiCl4] flow ratios. In particular, a lowest resistivity of about 23.7 μΩ cm, which is quite close to that of bulk TiN, was achieved using an [NH3]/[TiCl4] flow ratio of 0.3. Atomic force microscopy indicated that the root mean square surface roughness of that film was only about 5.1 nm. Under the same [NH3]/[TiCl4] flow ratio as above, X-ray diffraction analyses revealed the presence of a cubic TiN phase with a preferred orientation of (200) for Td ≤ 800 °C, while additional (111) and (220) orientations emerged when the film was deposited at 900 °C. In conclusion, a low resistivity (< 100 μΩ cm) TiN film can be formed by AP-HCVD with very low [NH3]/[TiCl4] flow ratios 0.3-1.4.  相似文献   

7.
Ta thin films were deposited on Si (100) substrates by an ion beam deposition method at various substrate bias voltages under Ar + N2 atmosphere with different pressure ratios of Ar and N2. The effects of nitrogen pressure in the plasma gas and the substrate bias voltage on the surface morphology, crystalline microstructure, electrical resistivity and diffusion barrier property were investigated. It was found that the fraction of a metastable β-phase in the Ta film deposited at the substrate bias voltage of − 50 V films decreased by adding nitrogen gas, while the α-Ta phase became dominant. As a result, the Ta films deposited at the substrate bias voltage of − 50 V under Ar (9 Pa) + N2 (3 Pa) atmosphere showed a dominant α-phase with good surface morphology, low resistivity, and superior thermal stability as a diffusion barrier.  相似文献   

8.
Metallic Zn films deposited on glass were wet or dry oxidized at 390 °C in pure N2 or O2 to understand the effects of water vapor in different oxygen partial pressure on growth of ZnO nanostructure during thermal oxidation. As-prepared ZnO oxides were characterized by a scanning electron microscope (SEM), an X-ray diffractometer (XRD), and a transmission electron microscope (TEM). Optical and electric properties of these ZnO films were characterized by photoluminescence (PL) and resistance measurements, respectively. It was found that the oxygen partial pressure and water vapor of environment significantly affect the morphologies of ZnO nanostructures. Decreasing oxygen partial pressure in dry oxidation can enhance a green light peak at 500 nm on PL spectra arising from defect-related emission and reduce the resistivity of the oxide films. High H2O(g)/O2 ratio in wet oxidation will significantly increase the intensity of a green light peak and reduce the resistivity of the oxide films. The effect of oxygen partial pressure and H2O(g)/O2 ratio on the PL spectra and resistivity of ZnO films are explained by the theory of defects equilibrium during oxidation.  相似文献   

9.
The evolution of the nanoscale structure and the chemical bonds formed in Ti-C-N-O films grown by reactive sputtering were studied as a function of the composition of the reactive atmosphere by increasing the partial pressure of an O2 + N2 gas mixture from 0 up to 0.4 Pa, while that of acetylene (carbon source) was constant. The amorphisation of the films observed by transmission electron microscopy was confirmed by micro-Raman spectroscopy, but it was not the only effect associated to the increase of the O2 + N2 partial pressure. The chemical environment of titanium and carbon, analysed by X-ray photoemission spectroscopy, also changes due to the higher affinity of Ti towards oxygen and nitrogen than to carbon. This gives rise to the appearance of amorphous carbon coexisting with poorly crystallized titanium oxynitride. The evolution of the films colour is explained on the basis of these structural changes.  相似文献   

10.
Thin films of Ta2O5, Nb2O5, and HfO2 were deposited by reactive-low-voltage-ion-plating (RLVIP) on unheated glass and silicon substrates. The film thickness was about 200 nm. Optical properties as well as mechanical film stress of these layers were investigated in dependence of various deposition parameters, i.e. arc current and oxygen partial pressure. For an arc current in the range between 40 and 50 A and an oxygen partial pressure of at least 11 · 10− 4 mbar good results were obtained. The refractive index and film thickness were calculated from spectrophotometric transmission data using the Swanepoel theory. For example at 550 nm wavelength the refractive index for thin RLVIP-Nb2O5-films was found to be n550 = 2.40. The optical absorption was obtained by photo-thermal deflection spectrometry. For the investigated materials absorption coefficients in the range of k = 5 · 10− 4 at 515 nm wavelength were measured. The mechanical film stress was determined by measuring the difference in bending of silicon substrates before and after the deposition process. For dense films, i.e. no water vapour sorption on atmosphere, the mechanical film stress was always compressive with values of some hundred MPa. In case of films deposited with higher arc currents (Iarc > 60A) and lower oxygen pressure (< 15 · 10− 4 mbar) the influence of a post deposition heat treatment at 350 °C for 4 h on air was also investigated. For these films the properties could clearly be improved by such treatment. However, by using lower arc currents and higher oxygen partial pressure during the ion plating process, immediately dense and environmental stable films with good optical as well as mechanical properties could be achieved without post deposition heat treatment. All the results obtained will be presented in graphs and diagrams.  相似文献   

11.
Multifunctional nanocomposites consisting of at least one ferromagnetic phase (e.g. FeCo) and one protective, wear resistant phase (e.g. TiN) are of interest for applications as sensors or actuators in harsh environments. This paper reports on the fabrication and characterization of nanocomposite thin films, prepared from FeCo/Ti metallic precursor multilayer composition spreads using a combinatorial sputter-deposition system. After deposition, the composition spread was annealed in nitrogen (5 × 105 Pa pressure) at 850 °C for 1.5 h, leading to preferential nitriding of Ti to TiN, thus forming the protective phase. Automated energy dispersive X-ray analysis, Auger electron spectroscopy, X-ray diffraction measurements, transmission electron microscopy (TEM) and vibrating sample magnetometry were used for the characterization of the as deposited and nitrided composition spreads. As an unexpected result, the appearance of a Heusler phase (Co2FeSi) in the nanocomposite was observed by TEM. After N2 annealing, the nanocomposites show reduced saturation magnetization values μ0MS between 0.5 and 0.95 T and improved coercive field values μ0Hc between 4 and 13.8 mT, dependent on the TiN content.  相似文献   

12.
Mo-Al-N films were deposited by a dc reactive magnetron sputtering technique. The effects of N2 partial pressure, substrate temperature, and aluminum content on the phase composition, microstructure, hardness and oxidation resistance of the films were studied. The MoAlN films as prepared are fcc Mo2N structure where partial Mo sites were substituted by Al, and the grain size of the crystallites increased from 8 to 30 nm when the Al concentration was increased from 6% to 33%. In the Mo0.94Al0.06N film, the hardness can reach 29 GPa, which is much higher than that in binary Mo-N systems. The oxidation resistance temperature of Mo-Al-N film with an Al content of 6% was higher than that of Mo-N films, and with further addition of Al content, the oxidation resistance temperature increased slightly.  相似文献   

13.
The Cu2O thin films were prepared on quartz substrate by reactive direct current magnetron sputtering. The influences of oxygen partial pressure and gas flow rate on the structures and properties of deposited films were investigated. Varying oxygen partial pressure leads to the synthesis of Cu2O, Cu4O3 and CuO with different microstructures. At a constant oxygen partial pressure of 6.6 × 10− 2 Pa, the single Cu2O films can be obtained when the gas flow rate is below 80 sccm. The as-deposited Cu2O thin films have a very high absorption in the visible region resulting in the visible-light induced photocatalytic activity.  相似文献   

14.
(Ti,Al,Cr)N hard reactive films were deposited on high speed steel substrates by multi-arc ion plating (MAIP) technology using pure Cr and Ti-50Al(at.%) alloy targets. The partial pressure of N2 was raised step by step in each deposition process. The surface morphology, the cross-sectional morphology of fracture sample, the surface compositions and the phase structure of the (Ti,Al,Cr)N films were investigated by scanning electronic microscope (SEM) and X-ray diffraction (XRD). The dense columnar microstructure was obtained in all of the (Ti,Al,Cr)N films, though micro-droplets evidently existed on the surface of the films. The micro-hardness of the film surface, the adhesive strength of the film/substrate and the thermal shock resistance were investigated. The results revealed the effects of bias voltage on the composition, phase structure, and mechanical properties. The improved balanced properties of a micro-hardness of about 50 GPa, an adhesive strength larger than 200 N and a thermal shock resistance of 7-8 cycles were reached at a bias voltage of 150 V. The present super-hard (Ti,Al,Cr)N films with N-gradient distribution may be an actual substitution of TiN, (Ti,Al)N, (Ti,Cr)N and single-layer (Ti,Al,Cr)N hard films.  相似文献   

15.
In this study, we investigate as-deposited Ta3N5-Ag nanocomposite thin films with near-zero temperature coefficients of resistance (TCRs) that are fabricated by a reactive co-sputtering method; these films can be used in thin-film embedded resistors. In these films, the TCR approaches zero due to compensation between Ag (+TCR) and Ta-N (−TCR) at resistivities higher than 0.005 Ω-cm.Taking into account the fact that Ag counterbalances the resistivity of the Ta3N5-Ag thin film, we performed reactive co-sputtering at a nitrogen partial pressure of 55%, corresponding to a resistivity of 0.384 Ω-cm. The resistivity and power density changed, respectively, from 1.333 Ω-cm and 0.44 W/cm2 for silver to 0.0059 Ω-cm and 0.94 W/cm2 for the Ta3N5-Ag thin film. A near-zero TCR of + 34 ppm/K was obtained at 0.94 W/cm2 in the Ta3N5-Ag thin film without heat treatment.  相似文献   

16.
The effect of aluminum (Al) addition to titanium nitride (TiN) matrix on the structural, mechanical and corrosion resistance properties of titanium-aluminum-nitride was studied. Ti1−xAlxN where x = 0, 0.5 and 1 films were coated onto substrates like Si wafer, AISI 316L stainless steel and low carbon steel by a direct current magnetron sputtering process. The layers were sputtered in pure Argon with a substrate temperature maintained at 400 °C, power of 250 W and a sputtering time of 120 min. XRD, TEM-SAED pattern and XPS analyses were made to study the structural properties of these films. Laser Raman spectrum showed the characteristic peaks at 249 and 659 cm−1 for the Ti0.5Al0.5N film. AFM analysis showed a relatively smooth surface for the ternary film. Corrosion performance analysis indicated that the Ti0.5Al0.5N coated specimen had superior corrosion resistance when compared to TiN and AlN coated substrates. Higher values of nanohardness and lower coefficient of friction were observed for the Ti 0.5Al0.5N specimen. Blood platelet adhesion experiments were made to examine the interaction between human blood and the materials in vitro.  相似文献   

17.
Nitrogen (N)-doped ZnO thin films were RF sputtered with different N2 volume (ranging from 10% to 100%) on sapphire (001) substrates. The influence of N2 vol.% on the properties of ZnO films was analyzed by various characterization techniques. The X-ray diffraction studies showed that the films grow along the preferential (002) crystallographic plane and the crystallinity varied with varying N2 vol.%. The films sputtered with 25 vol.% N2 showed better crystallinity. The transmittance was decreased with increasing N2 volume until 25% and was almost constant above 25%. A maximum optical band gap (2.08 eV) obtained for 10 vol.% N2 decreased with increasing N2 volume to reach a minimum of 1.53 eV at 100%. The compositional analysis confirmed the incorporation of N into ZnO films, and its concentration increased with increasing N2 volume to reach a maximum of ∼ 3.7 × 1021 atom/cm3 at 75% but then decreased slightly to 3.42 × 1021 atoms/cm3. The sign of Hall coefficient confirmed that the films sputtered with ≤ 25 vol.% N2 possess p-type conductivity which changes to n-type for > 25 vol.% N2.  相似文献   

18.
The electrochemical properties of TiN film coated on AISI 316 stainless steel (SS) by the magnetron sputtering physical vapor deposition (PVD) were studied for application as a bipolar plate. The crystal structure and surface morphology of the coatings were examined by x-ray diffractometry (XRD) and atomic force microscopy (AFM), respectively. The corrosion behaviors of the TiN films were investigated by electrochemical methods, including potentiodynamic polarization test and electrochemical impedance spectroscopy (EIS) under + 600 mVSCE application. The electrochemical behavior of the TiN coatings was enhanced with increasing bias voltage due to lower corrosion current density and higher Rct values during an immersion time of 168 h. This result was attributed to the formation of crystalline-refined TiN(200) at high bias voltage, which increased the coating compactness and the protective efficiency, and decreased passive current density.  相似文献   

19.
SrCu2O2 (SCO) thin films have been fabricated by pulsed laser deposition at oxygen partial pressures between 5 × 10− 5-5 × 10− 2 mbar and substrate temperatures from 300 °C to 500 °C. All films were single-phase SrCu2O2, p-type materials. Films deposited at a substrate temperature of 300 °C and oxygen pressure 5 × 10− 4 mbar exhibited the highest transparency (∼ 80%), having conductivity 10− 3 S/cm and carrier concentration around 1013 cm− 3. Films deposited at oxygen partial pressure higher than 10− 3 mbar exhibited higher conductivity and carrier concentration but lower transmittance. Depositions at substrate temperatures higher than 300 °C gave films of high crystallinity and transmittance even for films as thick as 800 nm. The energy gap of SrCu2O2 thin films was found to be around 3.3 eV.  相似文献   

20.
Zinc nitride thin films were deposited by magnetron sputtering using ZnN target in plasma containing either N2 or Ar gases. The rf-power was 100 W and the pressure was 5 mTorr. The properties of the films were examined with thermal treatments up to 550 °C in N2 and O2 environments. Films deposited in Ar plasma were opaque and conductive (ρ ∼ 10− 1 to 10− 2 Ω cm, ND ∼ 1018 to 1020 cm− 3) due to excess of Zn in the structure. After annealing at 400 °C, the films became more stoichiometric, Zn3N2, and transparent, but further annealing up to 550 °C deteriorated the electrical properties. Films deposited in N2 plasma were transparent but very resistive even after annealing. Both types of films were converted into p-type ZnO upon oxidation at 400 °C. All thermally treated zinc nitride films exhibited a shoulder in transmittance at around 345 nm which was more profound for the Ar-deposited films and particularly for the oxidized films. Zinc nitride has been found to be a wide band gap material which makes it a potential candidate for transparent optoelectronic devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号