首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In the present work, the generation of hydrogen rich synthetic gas from fluidized bed steam gasification of rice husk has been studied. An equilibrium model based on equilibrium constant and material balance has been developed to predict the gas compositions. The equilibrium gas compositions are compared with the experimental data of the present group as well as of available literature. The energy and exergy analysis of the process have been carried out by varying steam to biomass ratio (ψ) within the range between 0.1-1.5 and gasification temperature from 600 °C to 900 °C. It is observed that both the energy and exergy efficiencies are maximum at the CBP (carbon boundary point) though the hydrogen production increases beyond the CBP. The HHV (higher heating value) and the external energy input both continuously increase with ψ. However, the hydrogen production initially increases with increase in temperature up to 800 °C and then becomes nearly asymptotic. The HHV decreases rapidly with increase in temperature and energy input increases. Therefore, gasification in lower temperature region is observed to be economical in terms of a trade off between external energy input and HHV of the product gas.  相似文献   

2.
Rice husk lean-combustion in a bubbling and atmospheric fluidized bed reactor (FBR) of 0.3 m diameter with expansion to 0.4 m in the freeboard zone and 3 m height was investigated. Experiment design - response surface methodology (RSM) - is used to evaluate both excess air and normal fluidizing velocity influence (independent and controllable variables), in the combustion efficiency (carbon transformation), bed and freeboard temperature and silica content in the ashes. Hot gases emissions (CO2, CO and NOx), crystallographic structure and morphology of the ash are also shown. A cold fluidization study is also presented. The values implemented in the equipment operation, excess air in the range of 40-125% and normal fluidization velocities (0.13-0.15 Nm/s) show that the values near the lower limit, encourage bed temperatures around 750 °C with higher carbon transformation efficiencies around 98%. However, this condition deteriorated the amorphous potential of silica present in the ash. An opposite behavior was evidenced at the upper limit of the excess air. This thermochemical process in this type of reactor shows the technical feasibility to valorize RH producing hot gases and an amorphous siliceous raw material.  相似文献   

3.
The present study investigates the combustion of four kinds of biomass in a circulating fluidized bed. The combustion chamber is a steel cylinder with 145 mm inner diameter and 2 m height. Tests were conducted on wheat straw, sawdust-wood, cottonseed burs, and corncobs. Excess air was varied for each fuel. Temperature, heat flux and gas emissions were measured along the combustion chamber and at the chimney inlet. Results showed that sawdust-wood produces the highest values of CO emissions (about 3000 mg/Nm3). On the other hand, cottonseed burs produce the lowest values of CO emissions (about 250 mg/Nm3). The SO2 emissions were very low in all tests (less than 20 mg/Nm3). The lowest emission value occurred at an excess air ratio (EA) of 1.24 except for cottonseed burs where it was 1.4.  相似文献   

4.
Modeling of biomass gasification in bubbling and circulating fluidized bed (FB) gasifiers is reviewed. Approaches applied for reactor modeling, from black-box models to computational fluid-dynamic models, are described. Special attention is paid to comprehensive fluidization models, where semi-empirical correlations are used to simplify the fluid-dynamics. The conversion of single fuel particles, char, and gas is examined in detail. The most relevant phenomena to be considered in modeling of FB biomass gasifiers are outlined, and the need for further investigation is identified. An updated survey of published mathematical reactor models for biomass and waste gasification in FB is presented. The overall conclusion is that most of the FB biomass gasification models fit reasonably well experiments selected for validation, despite the various formulations and input data. However, there are few measurements available for comparison with detailed model results. Also, validation of models with data from full-scale FB biomass gasification units remains to be done.  相似文献   

5.
We compare interactions between metals and solid particles during the classic fluidized bed combustion (FBC) and a new low-high-low temperature (LHL) combustion of selected biomass. The biomass was a mixture of bark and pine wood residues typically used by a paper mill as a source of energy. Experiments, conducted on a pilot scale, reveal a clear pattern of surface predominance of light metals (Ca, Na, K) and core predominance of heavy metals (Cd, Cr) within the LHL-generated particles. No such behavior was induced by the FBC. Metal migration is linked to the evolution of inorganic particles. A composite picture of the metal rearrangements in the particles was obtained by a combination of independent analytical techniques including electron probe microanalysis, field emission scanning electron microscopy, inductively coupled plasma spectrometry, and X-ray diffractometry. It is suggested that the combination of (1) the high-temperature region in the LHL and (2) changes in the surface free energy of the particles is the driving force for the metal-particle behavior. Important practical implications of the observed phenomena are proposed, including removal of hazardous submicron particulate and reduction in fouling/slagging during biomass combustion. These findings may contribute to redesigning of currently operating FBC units to generate nonhazardous, nonleachable, reusable particles where heavy metals are immobilized while environmental and technological problems reduced.  相似文献   

6.
This paper presents the experimental results of CaO sorption enhanced anaerobic gasification of biomass in a self-design bubbling fluidized bed reactor, aiming to investigate the influences of operation variables such as CaO to carbon mole ratio (CaO/C), H2O to carbon mole ratio (H2O/C) and reaction temperature (T) on hydrogen (H2) production. Results showed that, over the ranges examined in this study (CaO/C: 0-2; H2O/C: 1.2-2.18, T: 489-740 °C), the increase of CaO/C, H2O/C and T were all favorable for promoting the H2 production. The investigated operation variables presented different influences on the H2 production under fluidized bed conditions from those obtained in thermodynamic equilibrium analysis or fixed bed experiments. The comparison with previous studies on fluidized bed biomass gasification reveals that this method has the advantage of being capable to produce a syngas with high H2 concentration and low CO2 concentration.  相似文献   

7.
D.O. Albina   《Renewable Energy》2006,31(13):2152-2163
This paper presents the experimental results of the emissions of CO and CO2 using rice husks as fuel on different configurations of spout-sluidized beds namely, multiple-spouted and spout-fluid fluidized bed. The emission of pollutants from the multiple-spouted bed and spout-fluid bed was investigated with rice husk fuel. The operating parameters considered were the different levels of excess air, different primary-to-secondary air ratios at each level of excess air and method of feeding. It was found that emission of CO from the multiple-spouted bed seemed to be lower with under-bed feeding of the rice husk fuel compared to over-bed feeding. However, the emission of CO2 did not change significantly for both methods of feeding. Changes in excess air levels influenced the emissions of CO and CO2 from the multiple-spouted bed within the excess air range investigated. It was found that emission of CO was less at 10% excess air with over-bed feeding; emission of CO in the case of under-bed feeding was lowest at 20% excess air level. It was found that the method of feeding had not significantly influenced the emission of CO and CO2 in the spout-fluid bed. The combustion efficiency however, in general, was slightly higher in the case of under-bed feeding compared to over-bed feeding. Emission of CO was less in the spout-fluid bed compared with the emission of CO in the multiple-spouted bed. The result can be likely attributed to the higher combustion efficiency attained by the spout-fluid bed compared with that of multiple-spouted bed.  相似文献   

8.
稻壳在循环流化床中燃烧现象的分析   总被引:1,自引:0,他引:1  
张卫杰  孙立  徐健  刘旭  赵昆 《可再生能源》2006,(2):23-24,27
为了研究稻壳在循环流化床中的燃烧特性,在生物质循环流化床试验台上对稻壳进行了燃烧试验。通过对试验过程中各测点温度及压力变化的分析,探讨了二次风和循环回料对稻壳在循环流化床燃烧炉内燃烧过程的影响。试验结果表明:二次风可以促进挥发分在稀相区的燃烧,对提升稀相区的温度作用明显;正常循环回料使得温度沿炉膛高度均匀分布。所得结论对生物质循环流化床的试验研究及实际运行有一定的参考意义。  相似文献   

9.
The depletion of fossil fuels and the increasing environmental problems, make biomass energy a serious alternative resource of energy. Biomass gasification is one of the major biomass utilization technologies to produce high quality gas. In this paper, biomass gasification was performed in a self-designed fluidized bed. The main factors (equivalence ratio, bed temperature, added catalyst, steam) influenced the gasification process were studied in detail. The results showed that the combustible gas content and the heating value increased with the increase of the temperature, while the CO2 content decreased. The combustible gas content decreased with the increase of the equivalence ratio (ER), but CO2 content increased. At the same temperature and at different ratios of CaO (from 0 to 20%), H2 content was increased significantly, CO content was also increased, CH4 content increased slightly, but CO2 content was decreased. With the addition of steam at different temperature, the gas in combustible components increased, the content of H2 increased obviously. The growth rate was 50% increased. As the bed temperature increased, gas reforming reaction increased, the CO and CH4 content decreased, but CO2 and H2 content increased.  相似文献   

10.
Ash effects during combustion of lignite/biomass blends in fluidized bed   总被引:2,自引:0,他引:2  
Aiming at investigating the role of minerals in evaluating co-firing applications of low rank coals and biomass materials, agricultural residues characteristic of the Mediterranean countries, one lignite and their blends with biomass proportions up to 20% wt, were burned in a lab-scale fluidized bed facility. Fly ashes and bed material were characterized in terms of mineralogical, chemical and morphological analyses and the slagging/fouling and agglomeration propensities were determined.The results showed that combustion of each fuel alone could provoke medium or high deposition problems. Combustion of raw fuels produced fly ashes rich in Ca, Si and Fe minerals, as well as K and Na minerals in the case of biomass samples. However, blending of the fuels resulted in a reduction of Ca, Fe, K and Na, while an increase of Si and Al elements in the fly ashes as compared to lignite combustion, suggesting lower deposition and corrosion problems in boilers firing these mixtures. The use of bauxite as an additive enriched bottom ash in calcium compounds. Under the conditions of the combustion tests, no signs of ash deposition or bed agglomeration were noticed.  相似文献   

11.
Experiments were carried out to study the characteristics of biomass gasification in a fluidized bed using industrial sand and porous medium as bed materials. Analysis was conducted to investigate the effects of different operation parameters, including bed material, gasification temperature (600 °C–900 °C), oxygen enrichment in the gasifying agent (21 vol.% to 50 vol.%), and steam flow rate (1.08 kg/h to 2.10 kg/h), on product yields and gas composition. The results of gas chromatography show that the main generated gas species were H2, CO, CO2, CH4, and C2H4. Compared with industrial sand as bed material, porous medium as bed material was more suitable for gasifying biomass to hydrogen-rich gas. The physical characteristics of porous structure are more favorable to heat transfer, producing the secondary crack of heavy hydrocarbons and generating more hydrogen and other permanent gases. The product yields of hydrogen-rich gas increased with increasing gasification temperature. The hydrogen concentration improved from 22.52 vol.% to 36.06 vol.%, but the CO concentration decreased from 37.53 vol.% to 28.37 vol.% with increasing temperature from 600 °C to 900 °C under the operation parameters of porous bed material at a steam flow rate of 1.56 kg/h. With increasing oxygen concentration, H2 concentration increased from 12.36% to 20.21%. Over the ranges of the examined experimental conditions, the actual steam flux value (e.g., 1.56 kg/h) was found to be the optimum value for gasification.  相似文献   

12.
A two phase biomass char steam gasification kinetic model is developed in a bubbling fluidized bed with nuclear heat as source of energy. The model is capable of predicting the temperature and concentration profiles of gases in the bubble, emulsion gas and solid phases. The robust model calculates the dynamic and steady state profiles, as well as the complex parameters of fluidized bed. Three pilot scale gasifiers were simulated in order to see the effect of the H/D ratio and the bed heating dynamics in the gasification kinetics, these parameters are found to be really important in order to enhance the water-gas shift reaction, and consequently, the hydrogen production. For the system modeled, hydrogen is the principal product of the steam-only gasification, as reported in the literature data. The carbon dioxide yield seems to be smaller than the ones in other works, but these differences are due principally to the energy source (no combustion is conducted) and that char (no oxygen in the solids) was used as the carbon source.  相似文献   

13.
A comprehensive model was developed to simulate gasification of pine sawdust in the presence of both air and steam. The proposed model improved upon the premise of an existing ASPEN PLUS-based biomass gasification model. These enhancements include the addition of a temperature-dependent pyrolysis model, an updated hydrodynamic model, more extensive gasification kinetics and the inclusion of tar formation and reaction kinetics. ASPEN PLUS was similarly used to simulate this process; however, a more extensive FORTRAN subroutine was applied to appropriately model the complexities of a Bubbling Fluidized Bed (“BFB”) gasifier. To confirm validity, the accuracy of the model's predictions was compared with actual experimental results. In addition, the relative accuracy of the comprehensive model was compared to the original base-model to see if any improvement had been made.Results show that the model predicts H2, CO, CO2, and CH4 composition with reasonable accuracy in varying temperature, steam-to-biomass, and equivalence ratio conditions. Mean error between predicted and experimental results is calculated to range from 6.1% to 37.6%. Highest relative accuracy was obtained in CO composition prediction while the results with the least accuracy were for CH4 and CO2 estimation at changing steam-to-biomass ratios and equivalence ratios. When compared to the original model, the comprehensive model predictions of H2 and CO molar fractions are more accurate than those of CO2 and CH4. For CO2 and CH4, the original model predicted with comparable or better accuracy when varying steam-to-biomass ratio and equivalence ratios but the comprehensive model performed better at varying temperatures.  相似文献   

14.
During gasification two steps take place. The first one is pyrolysis and the second one is gasification of the char that remains back after pyrolysis. The second step is slower than the first one, so this step is the limiting factor in designing fluidized beds. Kinetic data for designing fluidized beds are necessary. The paper describes gravimetric measurements directly applied to fluidized bed with large sample sizes. The samples are char of 6 mm wood pellets and 10–40 mm wood cubes in order to directly measure ”apparent kinetics”. The parameters examined in this paper are particle size, product gases (= hydrogen) in the gasification medium, type of wood and differences in CO2/steam gasification. The results are presented as Arrhenius diagrams and half-value period diagrams. The most important parameters are the temperature and product gases (hydrogen) in the gasification agent. The particle size seems to be less important for large wood particles as the measurements do not show significant differences for gasifying char of wood cubes 10–40 mm. The half-value periods for gasification of char from wood cubes (10 mm - 40 mm) with 100% steam at atmospheric pressure lie between 1000 s at 1023 K and 300 s at 1173 K. For char of 6 mm wood pellets the half-value periods lie between 1900 s at 1023 K and 250 s at 1173 K. The reaction is most likely in pore diffusion regime.  相似文献   

15.
The effect of comminution, drying, and densification on bubbling fluidized bed gasification was investigated by fractionating a forestry residue into a feedstock consisting of different particle sizes, moisture levels, and by densifying to pellets. The gasification performance was evaluated at nominal average bed temperatures of 725°, 800° and 875 °C at a constant fluidizing velocity (0.91 m s−1) with feed input rates between 9 and 24 kg h−1.The gas composition was observed to be influenced by both the particle size and form. Smaller particles led to a gas richer in carbon monoxide and depleted in hydrogen. The gasification of pellets led to a gas with the greatest hydrogen to carbon monoxide ratio. The smallest particles tested resulted in the worst gasification performance, as defined by cold gas efficiency, carbon conversion, and tar production. Despite differences in the gas composition among the larger particles and the pellets, similar carbon conversion and cold gas efficiency was observed.Relative to comparable test conditions with dry feed fractions (having a moisture mass fraction of 7–12%), an average 11% increase in carbon conversion was observed for the wetter feed fractions containing a moisture mass fraction of 24–31%. This increase in carbon conversion offset much of the expected decrease in cold gas efficiency by using a wetter feed material. A slight increase in hydrogen production and negligible change in tar production was observed for the wetter feed fractions relative to the dry feed fraction.  相似文献   

16.
The gasification characteristics of solid waste and wheat straw were investigated in an oxygen-rich atmosphere by using a laboratory-scale continuous fluidized bed reactor in the range of oxidation equivalent (ER) of 0.2~0.5 and reaction temperature of 600 °C~900 °C. Gasification of biomass and waste is an economical method for hydrogen production. When air is used as a carrier gas to gasify municipal solid waste, increasing the oxygen concentration can effectively increase the hydrogen concentration of the syngas. The product distribution of gasification reaction under different mixing ratios and reaction parameters was obtained. As is shown in the results, first, when the ER is between 0.2 and 0.5, if ER decreases by 0.1, the hydrogen concentration of gas production will increase by about 30%; second, if the oxygen concentration increases by 5%, the hydrogen concentration of gas production will increase by about 14%, and the calorific value of gas production will increase by about 14–18%; third, after adding wheat straw in a ratio of 1:1, due to the reduction of plastics, the overall yield of syngas decreased, but the yield of hydrogen increased, and the concentration of hydrogen in syngas increased by 6.4%.  相似文献   

17.
An auxiliary start-up system is required in fluidized bed combustors in order to heat the bed to a temperature at which coal fed to the bed will ignite and burn without producing excessive smoke. Four methods are used by the U.K. National Coal Board, the one selected for a particular application being dependent on the type of solid fuel used and the type of appliance. To illustrate the nature of the design calculations associated with start-up, the paper describes the principles of a mathematical model developed to determine the rating of burner required for the hot gas start-up approach.  相似文献   

18.
An efficient utilization of biomass fuels in power plants is often limited by the melting behavior of the biomass ash, which causes unplanned shutdowns of the plants. If the melting temperature of the ash is locally exceeded, deposits can form on the walls of the combustion chamber. In this paper, a bubbling fluidized bed combustion chamber with 50 MW biomass input is investigated that severely suffers deposit build-up in the freeboard during operation. The deposit layers affect the operation negatively in two ways: they act as an additional heat resistance in regions of heat extraction, and they can come off the wall and fall into the bed and negatively influence the fluidization behavior. To detect zones where ash melting can occur, the temperature distribution in the combustion chamber is calculated numerically using the commercial CPFD (computational particle fluid dynamics) code, Barracuda Version 15. Regions where the ash melting temperature is exceeded are compared with the fouling observed on the walls in the freeboard. The numerically predicted regions agree well with the observed location of the deposits on the walls. Next, the model is used to find an optimized operating point with fewer regions in which the ash melting temperature is exceeded. Therefore, three cases with different distributions of the inlet gas streams are simulated. The simulations show if the air inlet streams are moved from the freeboard to the necking area above the bed a more even temperature distribution is obtained over the combustion chamber. Hence, the areas where the ash melting temperatures are exceeded are reduced significantly and the formation of deposits in the optimized operational mode is much less likely.  相似文献   

19.
To develop a model for biomass gasification in fluidized bed gasifiers with high accuracy and generality that could be used under various operating conditions, the equilibrium model (EM) is chosen as a general and case-independent modeling method. However, EM lacks sufficient accuracy in predicting the content (volume fraction) of four major components (H2, CO, CO2 and CH4) in product gas. In this paper, three approaches—MODEL I, which restricts equilibrium to a specific temperature (QET method); MODEL II, which uses empirical correlations for carbon, CH4, C2H2, C2H4, C2H6 and NH3 conversion; and MODEL III, which includes kinetic and hydrodynamic equations—have been studied and compared to map the barriers and complexities involved in developing an accurate and generic model for the gasification of biomass.This study indicates that existing empirical correlations can be further improved by considering more experimental data. The updated model features better accuracy in the prediction of product gas composition in a larger range of operating conditions. Additionally, combining the QET method with a kinetic and hydrodynamic approach results in a model that features less overall error than the original model based on a kinetic and hydrodynamic approach.  相似文献   

20.
P. Plis  R.K. Wilk 《Energy》2011,36(6):3838-3845
This investigation concerns the process of air biomass gasification in a fixed bed gasifier. Theoretical equilibrium calculations and experimental investigation of the composition of syngas were carried out and compared with findings of other researchers. The influence of excess air ratio (λ) and parameters of biomass on the composition of syngas were investigated. A theoretical model is proposed, based on the equilibrium and thermodynamic balance of the gasification zone.The experimental investigation was carried out at a setup that consists of a gasifier connected by a pipe with a water boiler fired with coal (50 kWth). Syngas obtained in the gasifier is supplied into the coal firing zone of the boiler, and co-combusted with coal. The moisture content in biomass and excess air ratio of the gasification process are crucial parameters, determining the composition of syngas. Another important parameter is the kind of applied biomass. Despite similar compositions and dimensions of the two investigated feedstocks (wood pellets and oats husk pellets), compositions of syngas obtained in the case of these fuels were different. On the basis of tests it may be stated that oats husk pellets are not a suitable fuel for the purpose of gasification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号