共查询到17条相似文献,搜索用时 63 毫秒
1.
一种新的动态频繁项集挖掘方法 总被引:1,自引:0,他引:1
频繁项集挖掘是关联规则挖掘的重要步骤。在数据动态变化的环境下进行关联规则挖掘具有重要的现实意义。提出一种动态频繁项集挖掘算法,该算法建立在前一阶段挖掘的基础上,能避免过多地扫描数据库而影响挖掘性能,在最后生成全局频繁项集时,不需要全程扫描数据库,根据之前挖掘结果有选择地扫描相关的事务子集。实验表明,该算法挖掘性能远远优于Apriori算法,能有效地实现在数据动态变化环境下的挖掘频繁项集。 相似文献
2.
3.
基于频繁项集挖掘算法的改进与研究 总被引:2,自引:1,他引:1
关联规则挖掘是数据挖掘领域中重要的研究内容,频繁项集挖掘又是关联规则挖掘中的关键问题之一。针对已有的频繁项集挖掘算法存在的问题,通过对Apriori算法的分析,提出了Inter-Apriori频繁项集挖掘算法。该算法使用交集策略减少扫描数据库的次数,从而使算法达到较高的效率。实验结果表明,Inter-Apriori算法是Apriori算法效率的2~4倍。 相似文献
4.
5.
为了进一步降低扫描数据库的次数和减轻内存负担,从而更好地提高挖掘频繁项集的效率,一种基于Apriori的优化算法(M-Apriori)被提出. 该方法通过构建频繁状态矩阵来存放项集的频繁状态,构建事务布尔矩阵来存放事务与项集的关系,此算法只需在初始化阶段扫描一次数据库产生初始的频繁状态矩阵和事务布尔矩阵,并在此基础上直接递推产生所有的频繁项集. 实验证明,与Apriori算法相比,M-Apriori算法具有更好的性能与效率. 相似文献
6.
Apriori算法已成为关联规则挖掘的一个经典方法,广泛地被应用于如贸易决策、银行信用评估、金融保险等诸多领域。这种自底向上方法挖掘短频繁项集时效果较好,当频繁项集较长时,其时间复杂度量呈指数增长态势。本文结合自顶向下和自底向上搜索两种方法,提出一种能更好解决长、短频繁项集问题的双向挖掘方法。通过计算复杂度分析的实验表明,所提出的方法是有效可行的。 相似文献
7.
关联规则的发现是数据挖掘的一个重要方面,产生频繁项集是其中一个关键步骤。提出了一种基于十字链表快速挖掘频繁项集的算法,该算法只需扫描一次数据库,充分利用已有信息产生频繁项集,无需存储候选项集。通过与其它一些算法比较,说明该算法有更好的性能。 相似文献
8.
分析了New-Apriori和MWFI(Mining Weighted Frequent Itemsets)算法之不足,提出了一种挖掘加权频繁项集的New-MWFI算法。该算法按属性的权值对事务进行分类,并依次求出每个类别内的加权频繁项集。由于每个类别内的频繁项集满足Apriori性质,因而可以利用Apriori算法或其他改进算法进行挖掘,从而克服了原来算法的不合理和效率低下的缺陷。实验表明该算法能更有效地从数据集中挖掘出加权频繁项集。 相似文献
9.
10.
挖掘最大频繁项集的优化方法 总被引:1,自引:0,他引:1
通过对Apriori算法以及已有相关研究工作的分析,从数据库维数压缩、项存储结构以及剪枝几个方面对算法进行了优化,并从理论与试验两方面验证了优化算法的有效性。 相似文献
11.
基于双空间搜索的频繁项挖掘方法 总被引:6,自引:1,他引:6
1 引言 1998年Roberto J.和Bayardo Jr.利用自底向上搜索和项目集排序的方法建立了一种挖掘长型频繁项的Max-Miner算法;Lin D.和 Z.Kedem提出了一种双向钳形搜索Pincer-Search方法,利用自底向上搜索产生的非频繁项集来约束和修剪自顶向下方向的最大侯选频繁项集,候选频繁项集来自于Apriori方法。这两种方法虽然细节有所不同,但修剪最大频繁项的思想类似。假设{{1,2,3,4,5,6}}是最大候选频繁项MFCS(maximum-frequent-candidate-set),{1,6}和{3,6}是新发现的非频繁项集,对MFCS考虑{1,6}得{{1,2,3,4,5},{2,3,4,5,6}}。再用{3,6}更新这个MFCS:由于{3,6}是{2, 相似文献
12.
关联规则算法的实现与改进 总被引:11,自引:0,他引:11
关联规则作为一种数据挖掘的工具,它能够发现数据项集之间有趣的关联。在关联规则的算法中,Apriori算法是其中的关键算法之一。面对大量复杂的数据集,怎样选择数据结构,怎样优化处理过程,对于此算法的性能将会十分重要。该文首先介绍了关联规则的原理和Apriori算法的实现,然后提出了对该算法的若干改进,例如:采用树型结构存取频繁项集,使用三种缓存优化的方法等。这些优化都能够在整体上提高算法的效率。对于大数据项,试验显示,这些改进能够正确、有效、快速地实现Apriori算法。 相似文献
13.
一种直接在Trans-树中挖掘频繁模式的新算法 总被引:5,自引:1,他引:5
Frequent pattern mining plays an essential role in many important data mining tasks. FP-growth is a very efficient algorithm for frequent pattern mining. However, it still suffers from creating conditional FP-tree separately and recursively during the mining process. In this paper, we propose a new algorithm, called Least-Item-First Pat-tern Growth (LIFPG), for mining frequent patterns. LIFPG mines frequent patterns directly in Trans-tree withoutusing any additional data structures. The key idea is that least items are always considered first when the current pat-tern growth. By this way, conditional sub-tree can be created directly in Trans-tree by adjusting node-links and re-counting counts of some nodes. Experiments show that, in comparison with FP-Growth, our algorithm is about fourtimes faster and saves half of memory;it also has good time and space scalability with the number of transactions,and has an excellent performance in dense dataset mining as well. 相似文献
14.
由于互联网技术急速发展及其用户迅速地增加,很多网络服务公司每天不得不处理TB级甚至更大规模的数据量。在如今的大数据时代,如何挖掘有用的信息正变成一个重要的问题。关于数据挖掘(Data Mining)的算法在很多领域中已经被广泛运用,挖掘频繁项集是数据挖掘中最常见且最主要的应用之一,Apriori则是从一个大的数据集中挖掘出频繁项集的最为典型的算法。然而,当数据集比较大或使用单一主机时,内存将会被快速消耗,计算时间也将急剧增加,使得算法性能较低,基于MapReduce的分布式和并行计算则被提出。文中提出了一种改进的MMRA (Matrix MapReduce Algorithm)算法,它通过将分块数据转换成矩阵来挖掘所有的频繁k项集;然后将提出的算法和目前已经存在的两种算法(one-phase算法、k-phase算法)进行比较。采用Hadoop-MapReduce作为实验平台,并行和分布式计算为处理大数据集提供了一个潜在的解决方案。实验结果表明,改进算法的性能优于其他两种算法。 相似文献
15.
频繁闭合项目集的并行挖掘算法研究 总被引:2,自引:1,他引:2
频繁项目集挖掘因其在数据挖掘领域中的基础地位和广泛应用备受学术界和产业界的关注,用挖掘频繁闭合项目集代替挖掘频繁项目集是近年来提出的一个重要策略。不同于以往提出的挖掘所有频繁项目集的并行算法,本文针对频繁闭合项目集的特性及并行挖掘的特点,给出了共享存储器模型上(Shared Memory)基于频繁模式树(FP-tree)的挖掘频繁闭合项目集的并行算法(FCIPM)思想,提出了频繁闭合项目集直接判断法,性能分析表明所提技术对算法的性能提高起到了关键作用。 相似文献
16.
一个改进的关联规则的频繁项目集数据挖掘算法 总被引:1,自引:0,他引:1
在关联规则中的Apriori算法,具有天生的缺陷,运行效果很不理想。为了克服Apriori算法的缺点,本文提出了一个改进的算法:在产生频繁项目集组合时,只需扫描数据库一次,这样就可以有效率地降低I/O的存取时间,更快速地找出符合使用者需求的关联规则。仿真实验表明,该算法是有效的。 相似文献
17.
分析最大频繁项集和完全频繁项集的关系,提出了一个挖掘最大频繁项集的高效算法DFMFI—Miner(The Miner Basedon Depth—First Searching for Mining Maximal Frequent Itemsets),采用深度优先方法搜索项集空间,采用垂直位图及一定的压缩方法对表示事务数据库并进行约简,并采用多种有效剪枝策略和优化策略,提高了算法的效率。在多个数据集上进行了实验,实验结果表明该算法特别适于挖掘具有长频繁项集的数据集。 相似文献