共查询到20条相似文献,搜索用时 0 毫秒
1.
The performance of a polymer electrolyte membrane (PEM) fuel cell is significantly affected by liquid water generated at the cathode catalyst layer (CCL) potentially causing water flooding of cathode; while the ionic conductivity of PEM is directly proportional to its water content. Therefore, it is essential to maintain a delicate water balance, which requires a good understanding of the liquid water transport in the PEM fuel cells. In this study, a one-dimensional analytical solution of liquid water transport across the CCL is derived from the fundamental transport equations to investigate the water transport in the CCL of a PEM fuel cell. The effect of CCL wettability on liquid water transport and the effect of excessive liquid water, which is also known as “flooding”, on reactant transport and cell performance have also been investigated. It has been observed that the wetting characteristic of a CCL plays significant role on the liquid water transport and cell performance. Further, the liquid water saturation in a hydrophilic CCL can be significantly reduced by increasing the surface wettability or lowering the contact angle. Based on a dimensionless time constant analysis, it has been shown that the liquid water production from the phase change process is negligible compared to the production from the electrochemical process. 相似文献
2.
Ion and water transport phenomena in the polymer electrolyte membrane (PEM) play a significant role in the energy conversion process of a PEM fuel cell, as they provide the closure for the electric and mass transport in the PEM fuel cells. A mathematical model for the transport of ion and water in the PEM is formulated in this study, based on the non-equilibrium thermodynamics and the Generalized Stefan–Maxwell equations. The physical constants of the model, such as the binary diffusion coefficients in the Generalized Stefan–Maxwell equations, are determined from experimental data available in literature for membrane-water diffusion and conductivity. The electrolyte transport model is incorporated into a model for the entire PEM fuel cell; water transport in the electrolyte and in the other cell components are coupled and solved in a single computational domain. It is shown that the present generalized formulation is advantageous to other formulations for the macroscopic analysis of transport phenomena through the membrane electrolyte. 相似文献
3.
Back-diffusion in PEM fuel cells is the water transport mechanism contributing to balance the water content profile in the membrane (in the through-plane direction), transporting water molecules from the cathode electrode towards the anode side of the membrane. In this technical note, neutron radiographs are presented for a 50 cm2 N-117 fuel cell with serpentine flow field, where the effect of the back diffusion transport mechanism is clearly identified, in the form of crossed patterns following the cross-flow layout of the flow field. The back diffusion water transport is evident despite the high thickness of the N-117 membrane. 相似文献
4.
Water content in the membrane and the presence of liquid water in the catalyst layers (CL) and the gas diffusion layers (GDL) play a very important role in the performance of a PEM fuel cell. To study water transport in a PEM fuel cell, a two‐phase flow mathematical model is developed. This model couples the continuity equation, momentum conservative equation, species conservative equation, and water transport equation in the membrane. The modeling results of fuel cell performances agree well with measured experimental results. Then this model is used to simulate water transport and current density distribution in the cathode of a PEM fuel cell. The effects of operating pressure, cell temperature, and humidification temperatures on the net water transfer through the membrane, liquid water saturation, and current density distribution are studied. © 2006 Wiley Periodicals, Inc. Heat Trans Asian Res, 35(2): 89–100, 2006; Published online in Wiley InterScience ( www.interscience. wiley.com ). DOI 10.1002/htj.20107 相似文献
5.
D.S. FalcãoP.J. Gomes V.B. OliveiraC. Pinho A.M.F.R. Pinto 《International Journal of Hydrogen Energy》2011,36(19):12486-12498
The potential of fuel cells for clean and efficient energy conversion is generally recognized.The proton-exchange membrane (PEM) fuel cells are one of the most promising types of fuel cells. Models play an important role in fuel cell development since they enable the understanding of the influence of different parameters on the cell performance allowing a systematic simulation, design and optimization of fuel cells systems. In the present work, one-dimensional and three-dimensional numerical simulations were performed and compared with experimental data obtained in a PEM fuel cell. The 1D model, coupling heat and mass transfer effects, was previously developed and validated by the same authors [1] and [2]. The 3D numerical simulations were obtained using the commercial code FLUENT - PEMFC module.The results show that 1D and 3D model simulations considering just one phase for the water flow are similar, with a slightly better accordance for the 1D model exhibiting a substantially lower CPU time. However both numerical results over predict the fuel cell performance while the 3D simulations reproduce very well the experimental data. The effect of the relative humidity of gases and operation temperature on fuel cell performance was also studied both through the comparison of the polarization curves for the 1D and 3D simulations and experimental data and through the analysis of relevant physical parameters such as the water membrane content and the proton conductivity. A polarization curve with the 1D model is obtained with a CPU time around 5 min, while the 3D computing time is around 24 h. The results show that the 1D model can be used to predict optimal operating conditions in PEMFCs and the general trends of the impact on fuel cell performance of several important physical parameters (such as those related to the water management). The use of the 3D numerical simulations is indicated if more detailed predictions are needed namely the spatial distribution and visualization of various relevant parameters.An important conclusion of this work is the demonstration that a simpler model using low CPU has potential to be used in real-time PEMFC simulations. 相似文献
6.
Jon P. Owejan Jeffrey J. Gagliardo Jacqueline M. Sergi Satish G. Kandlikar Thomas A. Trabold 《International Journal of Hydrogen Energy》2009
A proton exchange membrane fuel cell (PEMFC) must maintain a balance between the hydration level required for efficient proton transfer and excess liquid water that can impede the flow of gases to the electrodes where the reactions take place. Therefore, it is critically important to understand the two-phase flow of liquid water combined with either the hydrogen (anode) or air (cathode) streams. In this paper, we describe the design of an in situ test apparatus that enables investigation of two-phase channel flow within PEMFCs, including the flow of water from the porous gas diffusion layer (GDL) into the channel gas flows; the flow of water within the bipolar plate channels themselves; and the dynamics of flow through multiple channels connected to common manifolds which maintain a uniform pressure differential across all possible flow paths. These two-phase flow effects have been studied at relatively low operating temperatures under steady-state conditions and during transient air purging sequences. 相似文献
7.
Daniel G. Strickland 《Journal of power sources》2010,195(6):1667-563
Air-delivery is typically the largest parasitic loss in PEM fuel cell systems. We develop a passive water management system that minimizes this loss by enabling stable, flood-free performance in parallel channel architectures, at very low air stoichiometries. Our system employs in situ-polymerized wicks which conform to and coat cathode flow field channel walls, thereby spatially defining regions for water and air transport. We first present the fabrication procedure, which incorporates a flow field plate geometry comparable to many state-of-the-art architectures (e.g., stamped metal or injection molded flow fields). We then experimentally compare water management flow field performance versus a control case with no wick integration. At the very low air stoichiometry of 1.15, our system delivers a peak power density of 0.68 W cm−2. This represents a 62% increase in peak power over the control case. The open channel and manifold geometries are identical for both cases, and we demonstrate near identical inlet-to-outlet cathode pressure drops at all fuel cell operating points. Our water management system therefore achieves significant performance enhancement without introducing additional parasitic losses. 相似文献
8.
Two-phase transport in the cathode gas diffusion layer (GDL) of a proton exchange membrane fuel cell (PEMFC) is studied with a porosity gradient in the GDL. The porosity gradient is formed by adding micro-porous layers (MPL) with different carbon loadings on the catalyst layer side and on the flow field side. The multiphase mixture model is employed and a direct numerical procedure is used to analyze the profiles of liquid water saturation and oxygen concentration across the GDL as well as the resulting activation and concentration losses. The results show that a gradient in porosity will benefit the removal rate of liquid water and also enhance the transport of oxygen through the cathode GDL. The present study provides a theoretical support for the suggestion that a GDL with porosity gradient will improve the cell performance. 相似文献
9.
《International Journal of Hydrogen Energy》2022,47(96):40803-40813
Water management in fuel cells is important for avoiding the phenomenon of flooding or dehydration in the stack and for maintaining good fuel cell performance and durability. This study focuses on the evaluation of the dynamic performance and behaviour (purge cycle) of the commercial Polymer Electrolyte Membrane (PEM) fuel cell stack towards water transport (water balance) at different operating conditions. The stack was operated at different current loads (0–10 A) and operating temperature (ambient to 50 °C). The results indicated that the measured water accumulation in the stack increased with the increase in current load. The optimal current load was 4 A, with calculated efficiency of 62.8%. The optimal operating temperature was 40 °C, resulting in calculated efficiency of 52.3%. At higher temperature, the fuel cell performance decreased, and the measured water balance was not properly distributed, which could be due to the dehydration and low conductivity of the electrolyte membrane. It can be concluded that the behaviour and performance of the stack, as well as the water balance in the stack, were influenced by the operating conditions. Moreover, this study improves the understanding of fuel cell performance and behaviour based on evaluation of the water balance. 相似文献
10.
Alfredo Iranzo Pierre Boillat Johannes Biesdorf Elvira Tapia Antonio Salva José Guerra 《International Journal of Hydrogen Energy》2014
This work presents an experimental investigation on the preferential accumulation of liquid water in the channels of a multiple serpentine PEMFC with 50 cm2 active area. Neutron imaging was used for visualizing the liquid water distribution during the cell operation for a wide range of operating conditions. Liquid water accumulation in the cathode channels was observed for most of the operating conditions, with a preferential accumulation in certain channels of the flow field. A statistical analysis was performed in order to determine the main characteristics of this accumulation (i.e. channel number and degree of accumulation). As cathode channels were positioned in vertical direction, it was found that gravity effects had an important influence in the accumulation, as well as the relative position of the channel with respect to the inlet and outlet locations. The gas flow direction had also a major impact on the water accumulation within the channels, with significantly more water accumulated in channels with upwards gas flow. 相似文献
11.
《International Journal of Hydrogen Energy》2022,47(97):41138-41153
We present a pore-scale simulation of the capillary condensation of water in the cathode catalyst layer (CCL) of proton exchange membrane fuel cells by the lattice Boltzmann method. Based on the reconstructed CCL, the capillary condensation process in CCL is simulated under different humidity conditions, and the effects of porosity and especially wettability on the liquid water distribution in CCL are studied. The influence of liquid water on the void pore size distribution and pore connectivity in CCL is evaluated, and the results show that the hydrophilic CCL is more prone to be flooded. Subsequently, the effective transport coefficients of oxygen and proton in partially saturated CCL are investigated. The results reveal that the hydrophobic CCL is beneficial for reducing the gas transport tortuosity but simultaneously causes a higher Knudsen diffusion resistance. By comprehensively considering the changes in tortuosity and Knudsen resistance caused by liquid water, a more practical correlation of effective diffusivity for the partially saturated CCL is proposed. Moreover, this work proves the vital role of liquid water in the proton conduction in CCL. The simulated effective proton conductivity in CCL is more agree with the measurements if the contribution of liquid water to proton transport is considered. 相似文献
12.
Zijie Lu Michael M. DainoCody Rath Satish G. Kandlikar 《International Journal of Hydrogen Energy》2010
The transport of liquid water and gaseous reactants through a gas diffusion layer (GDL) is one of the most important water management issues in a proton exchange membrane fuel cell (PEMFC). In this work, the liquid water breakthrough dynamics, characterized by the capillary pressure and water saturation, across GDLs with and without a microporous layer (MPL) are studied in an ex-situ setup which closely simulates a real fuel cell configuration and operating conditions. The results reveal that recurrent breakthroughs are observed for all of the GDL samples tested, indicating the presence of an intermittent water drainage mechanism in the GDL. This is accounted for by the breakdown and redevelopment of the continuous water paths during water drainage as demonstrated by Haines jumps. For GDL samples without MPL, a dynamic change of breakthrough locations is observed, which originates from the rearrangement of the water configuration in the GDL following the drainage. For GDL samples with MPL, no dynamic change of breakthrough location can be found and the water saturation is significantly lower than the samples without MPL. These results suggest that the MPL not only limits the number of water entry locations into the GDL (such that the water saturation is drastically reduced), but also stabilizes the water paths (or morphology). The effect of MPL on the two-phase flow dynamics in gas channels is also studied with multi-channel flow experiments. The most important result is that GDL without MPL promotes film flow and shifts the slug-to-film flow transition to lower air flow rates, compared with the case of GDL with MPL. This is closely related to the larger number of water breakthrough locations through GDL without MPL, which promotes the formation of water film. 相似文献
13.
We have investigated the transient behavior of the water transport across the membrane of the PEM fuel cell to seek for effective control schemes so that the best dynamic performance of the fuel cell can be obtained. It is found that both a larger starting operational current density i0 and a smaller operational current density i can lead to a smaller dynamic response time tss, the time for the water distribution across the membrane to reach the steady state. Present results nevertheless point out that the most powerful as well as the most feasible control scheme is to control the humidification parameter k, i.e. to adjust the water content of the feeding fuel, so that the tss would remain steadily in a reasonably low value in a wide range of water flux fraction β, another control parameter of the membrane. The present conclusion can be useful for the design of the PEM fuel cell when its application on the dynamic mobile system is concerned. 相似文献
14.
In this study, a mathematical model is developed for the cathode of PEM fuel cells, including multi-phase and multi-species transport and electrochemical reaction under the isothermal and steady-state conditions. The conservation equations for mass, momentum, species and charge are solved using the commercial software COMSOL Multiphysics. The catalyst layer is modeled as a finite domain and assumed to be composed of a uniform distribution of supported catalyst, liquid water, electrolyte and void space. The Stefan–Maxwell equation is used to model the multi-species diffusion in the gas diffusion and catalyst layers. Owing to the low relative species' velocity, Darcy's law is used to describe the transport of gas and liquid phases in the gas diffusion and catalyst layers. A serpentine flow field is considered to distribute the oxidant over the active cathode electrode surface, with pressure loss in the flow direction along the channel. The dependency of the capillary pressure on the saturation is modeled using the Leverette function and the Brooks and Corey relation. A parametric study is carried out to investigate the effects of pressure drop in the flow channel, permeability, inlet relative humidity and shoulder/channel width ratio on the performance of the cell and the transport of liquid water. An inlet relative humidity of 90 and 80% leads to the highest performance in the cathode. Owing to liquid water evaporation, the relative humidity in the catalyst layer reaches 100% with an inlet relative humidity of 90 and 80%, resulting in a high electrolyte conductivity. The electrolyte conductivity plays a significant role in determining the overall performance up to a point. Further, the catalyst layer is found to be important in controlling the water concentration in the cell. The cross-flow phenomenon is shown to enhance the removal of liquid water from the cell. Moreover, a shoulder/channel width ratio of 1:2 is found to be an optimal ratio. A decrease in the shoulder/channel ratio results in an increase in performance and an increase in cross flow. Finally, the Leverette function leads to lower liquid water saturations in the backing and catalyst layers than the Brooks and Corey relation. The overall trend, however, is similar for both functions. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
15.
Passive water management at the cathode of a planar air-breathing proton exchange membrane fuel cell
Water management is a significant challenge in portable polymer electrolyte membrane (PEM) fuel cells and particularly in proton exchange membrane (PEM) fuel cells with air-breathing cathodes. Liquid water condensation and accumulation at the cathode surface is unavoidable in a passive design operated over a wide range of ambient and load conditions. Excessive flooding or dry out of the open cathode can lead to a dramatic reduction of fuel cell power. We report a water management design based on a hydrophilic and electrically conductive wick. A prototype air-breathing fuel cell with the proposed water management design successfully operated under severe flooding conditions, ambient temperature 10 °C and relative humidity of 80%, for up to 6 h with no observable cathode flooding or loss of performance. 相似文献
16.
Hasan K. Atiyeh Kunal Karan Brant Peppley Aaron PhoenixEla Halliop Jon Pharoah 《Journal of power sources》2007
A highly reliable experimental system that consistently closed the overall water balance to within 5% was developed to study the role of a microporous layer (MPL), attached to carbon paper porous transport layer (PTL), on the water transport and performance of a standard 100 cm2 active area PEM fuel cell. Various combinations of cells were built and tested with PTLs at the electrodes using either carbon fibre paper with a MPL (SGL 10BB) or carbon fibre paper without a MPL (SGL 10BA). The net water drag coefficient at three current densities (0.3, 0.5 and 0.7 A cm−2) for two combinations of anode/cathode relative humidity (60/100% and 100/60%) and stoichiometric ratios of H2/air (1.4/3 and 1.4/2) was determined from water balance measurements. The addition of a MPL to the carbon fibre paper PTL at the cathode did not cause a statistically significant change to the overall drag coefficient although there was a significant improvement to the fuel cell performance and durability when a MPL was used at the cathode. The presence of a MPL on either electrode or on both electrodes also exhibited similar performance compared to when the MPL was placed at the cathode. These results indicate that the presence of MPL indeed improves the cell performance although it does not affect the net water drag coefficient. The correlation between cell performance and global water transport cannot be ascertained and warrants further experimental investigation. 相似文献
17.
《International Journal of Hydrogen Energy》2022,47(20):11007-11027
Cathode channel of a PEM fuel cell is the critical domain for the transport of water and heat. In this study, a mathematical model of water and heat transport in the cathode channel is established by considering two-phase flow of water and air as well as the phase change between water and vapor. The transport process of the species of air is governed by the convection-diffusion equation. The VOSET (coupled volume-of-fluid and level set method) method is used to track the interface between air and water, and the phase equilibrium method of water and vapor is employed to calculate the mass transfer rate on the two-phase interface. The present model is validated against the results in the literature, then applied to investigate the characteristics of two-phase flow and heat transfer in the cathode channel. The results indicate that in the inlet section, water droplets experience three evolution stages: the growing stage, the coalescence stage and the generation stage of dispersed water drops. However, in the middle and outlet sections of the channel, there are only two stages: the growth of water droplets, and the formation of a water film. The mass transfer rate of phase change in the inlet section of the channel varies over time, exhibiting an initial increase, a decrease followed, and a stabilization finally, with the maximum and stable values of 1.78 × 10?4 kg/s and 1.52 × 10?4 kg/s for Part 1, respectively. In the middle and outlet sections, the mass transfer rate increase firstly and then keeps stable gradually. Furthermore, regarding the distribution of the temperature and vapor mass fraction in the channel, near the upper surface of the channel, the temperature and vapor mass fraction first change slightly (x < 0.03 m) and then rapidly decrease with fluctuations (x > 0.03 m). In the middle of the channel, the temperature and vapor mass fraction slowly decrease with fluctuation. 相似文献
18.
In this paper, a two-phase non-isothermal PEM fuel cell model based on the previously developed mixed-domain PEM fuel cell model with a consistent treatment of water transport in MEA has been established using the traditional two-fluid method. This two-phase multi-dimensional PEM fuel cell model could fully incorporate both the anode and cathode sides, properly account for the various water phases, including water vapor, water in the membrane phase, and liquid water, and truly enable numerical investigations of water and thermal management issues with the existence of condensation/evaporation interfaces in a PEM fuel cell. This two-phase model has been applied in this paper in a two-dimensional configuration to determine the appropriate condensation and evaporation rate coefficients and conduct extensive numerical studies concerning the effects of the inlet humidity condition and temperature variation on liquid water distribution with or without a condensation/evaporation interface. 相似文献
19.
A three-dimensional mixed-domain PEM fuel cell model with fully-coupled transport phenomena has been developed in this paper. In this model, after fully justified simplifications, only one set of interfacial boundary conditions is required to connect the water content equation inside the membrane and the equation of the water mass fraction in the other regions. All the other conservation equations are still solved in the single-domain framework. Numerical results indicate that although the fully-coupled transport phenomena produce only minor effects on the overall PEM fuel cell performance, i.e. average current density, they impose significant effects on current distribution, net water transfer coefficient, velocity and density variations, and species distributions. Intricate interactions of the mass transfer across the membrane, electrochemical kinetics, density and velocity variations, and species distributions dictate the detailed cell performances. Therefore, for accurate PEM fuel cell modeling and simulation, the effects of the fully-coupled transport phenomena could not be neglected. 相似文献
20.
Experimental investigation of liquid water formation and transport in a transparent single-serpentine PEM fuel cell 总被引:1,自引:0,他引:1
Liquid water formation and transport were investigated by direct experimental visualization in an operational transparent single-serpentine PEM fuel cell. We examined the effectiveness of various gas diffusion layer (GDL) materials in removing water away from the cathode and through the flow field over a range of operating conditions. Complete polarization curves as well as time evolution studies after step changes in current draw were obtained with simultaneous liquid water visualization within the transparent cell. The level of cathode flow field flooding, under the same operating conditions and cell current, was recognized as a criterion for the water removal capacity of the GDL materials. When compared at the same current density (i.e. water production rate), higher amount of liquid water in the cathode channel indicated that water had been efficiently removed from the catalyst layer.
Visualization of the anode channel was used to investigate the influence of the microporous layer (MPL) on water transport. No liquid water was observed in the anode flow field unless cathode GDLs had an MPL. MPL on the cathode side creates a pressure barrier for water produced at the catalyst layer. Water is pushed across the membrane to the anode side, resulting in anode flow field flooding close to the H2 exit. 相似文献