首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
Ultrafast-switching viologen-anchored TiO2 electrochromic device (ECD) was developed by introducing Sb-doped SnO2 (SbxSn1−xO2, ATO) as counter electrode (CE), and the switching behavior of the fabricated ECD was investigated as a function of Sb-doping concentration. About 9-nm-sized SbxSn1−xO2 (x=0–0.3) nanoparticles were synthesized by a solvothermal reaction of tin (IV) chloride and antimony (III) chloride at 240 °C, and employed to fabricate 2.4-μm-thick transparent CE. Working electrode (WE) was formed from the 7-nm-sized TiO2 nanoparticle by a doctor blade method, and the thickness of the nanoporous TiO2 electrode was 4.5 μm. The phosphonated viologen, bis(2-phosphonylethyl)-4,4′-bipyridinium dibromide, was then adsorbed on the prepared films for the construction of the ECD. The response time was strongly dependent on the doping concentration of Sb in ATO, and the fastest switching response was observed at 3 mol%. At this composition, the coloration time was 5.7 ms, and the bleaching time was 14.4 ms, which is regarded as one of the best results so far reported.  相似文献   

2.
We developed a novel hybridized electron-selective layer comprised of Sb-doped SnO2 nanowires for efficient inverted polymer solar cells. A device containing Sb-doped SnO2 nanowires with 0.1 mg/ml concentration showed a significant increase in power conversion efficiency to 3.23% with an enhanced fill factor, compared to a reference device without the nanowires (2.89%). Such improvement is attributed to the high electrical conductivity of one-dimensional Sb-doped SnO2 nanowires and to the good light transmittance through the wide band gap of tin oxide. Also the surface morphology of the hybridized electron-selective layer is made denser and improved by incorporating one-dimensional Sb-doped SnO2 nanowires, resulting in the enhancement of the photovoltaic performance.  相似文献   

3.
In this investigation crystalline ruthenium dioxide square nanorods have been grown on a variety of substrate surfaces and were used as the cathodes in a system to electrolyze an aqueous solution of KOH. Gaseous hydrogen was produced at the cathode and oxygen at the anode. The voltage measured at the cathode relative to the solution, and that across both electrodes was found to be dependent on the cathode material used, specifically the substrate material and the density and nature of a RuO2 nanorod coating. The formation of a double layer on the nanorod surface was proposed to render the production rate of hydrogen, dependent on total interfacial area alone and not on the geometric shape of the nanorods themselves. At a current density of 20 mA/cm2, the operating efficiency of the RuO2 nanorod cathode cell was found to be 1.7 times that obtained for a cathode electrode fabricated with a simple thin film of RuO2.  相似文献   

4.
Li-doped Co3O4 (LixCo3−xO4, x = 0, 0.07, 0.21, 0.35, 0.49) spinel powders were prepared with a thermal decomposition method and characterized by XRD, SEM, TEM, and XPS. The LixCo3−xO4 samples were formed as tetragonal powders with a simple spinel structure and with particle sizes about 30–40 nm. All LixCo3−xO4 samples exhibited a 50 mV more negative onset potential for oxygen evolution reaction (OER) than Co3O4. The influence of Li-doping is discussed regarding cation distribution, electronic conductivity and oxygen binding energy. Li0.21Co2.79O4 exhibited the highest OER activity amongst the five samples. A single cell, non-precious metal alkaline anion exchange membrane water electrolysers (AAEMWE) with Li0.21Co2.79O4 anode exhibited a current density of 300 mA cm−2 at a voltage 2.2 to 2.05 V at temperatures of 20–45 °C and the stability was examined with a continuous operation for 10 h at 300 mA cm−2 and at 30 °C.  相似文献   

5.
Ruthenium oxide catalysts were prepared by a sol–gel technique and calcined at different temperatures e.g., 400 °C, 500 °C and 600 °C. The catalysts performance for the oxygen evolution reaction was studied using cyclic voltammetry and their performance in a high temperature proton exchange membrane water electrolyser (PEMWE) examined. Physio-chemical characterization was carried out to study the thermal stability, oxygen-metal bond formation, crystallinity phase and crystallite size, particle size and elemental analysis by TGA, FTIR, XRD, TEM and EDX respectively. The electrolyte used for electrochemical characterisation was 1.0 M H3PO4 and 0.5 M H2SO4. Additionally, the effect of calcination and electrolyte temperature on oxygen evolution reaction of RuO2 catalysts was studied and the apparent activation energy was determined using chronoamperometry. The prepared RuO2 were tested as anode catalyst in PEMWE in the temperature range of 120–150 °C using phosphoric acid doped polybenzimidazole membrane electrolyte. The physio-chemical and electrochemical characterization results indicate that RuO2 calcined at 500 °C gave the best performance with a current density of 0.875 A cm−2 at 1.8 V in a PEMWE operated at 150 °C.  相似文献   

6.
IrO2 electrocatalysts were prepared and electrochemically characterized for the oxygen evolution reaction in a Solid Polymer Electrolyte (SPE) electrolyzer. By using a sulfite complex-based preparation procedure, an amorphous iridium oxide precursor was obtained at 80 °C, which was, successively, calcined at different temperatures: 350 °C, 400 °C and 450 °C. A physico-chemical characterization was carried out by X Ray Diffraction (XRD), Transmission Electron Microscopy (TEM) and X-ray-photoelectron spectroscopy (XPS). The various IrO2 catalysts were sprayed onto a Nafion 115 membrane with a loading of 2.5 mg cm−2 to form the anode. A Pt/C catalyst (Pt loading 0.5 mg cm−2) was used as cathode. The best electrochemical performance was obtained for the cell based on the IrO2 calcined at 350 °C. The maximum current density at high potentials (1.8  V) was about 1.75 A cm−2. Accelerated time-tests at 2 A cm−2 demonstrated a suitable stability of the IrO2 calcined at 350 °C; however, the intrinsic stability appeared to increase with the calcination temperature. The sample calcined at 400 °C could represent a good compromise between performance and intrinsic stability.  相似文献   

7.
In proton exchange membrane (PEM) water electrolysis, iridium oxide (IrO2) has often been utilized as a main catalyst for the oxygen evolution reaction (OER) as a rate-determining step. In general, the performance of PEM water electrolysis is dominantly affected by the specific surface area and the porous structure of the IrO2 catalyst. Thus, in this study, IrO2 and antimony-doped tin oxide (ATO) nanostructures with high specific surface areas were synthesized through the Adams fusion method. The as-prepared samples showed well-defined porous high-crystalline nanostructures. The ATO nanoparticles as a support were surrounded by IrO2 nanoparticles as a catalyst without serious agglomeration, indicating that the IrO2 catalyst was uniformly distributed on the ATO support. Compared to pure IrO2, the IrO2/ATO mixture electrodes showed superior OER properties because of their increased electrochemical active sites.  相似文献   

8.
Nanorod coated materials have the potential of being exceptional electro-catalysts. In this investigation Pt nanorod decorated ruthenium dioxide square nanorods have been grown on aluminized Si substrates and used as the cathode in a system to electrolyze a [2M] aqueous solution of KOH. Gaseous hydrogen was produced at the cathode. The voltage measured at the cathode relative to the solution, and that across both electrodes was found to be dependent on the cathode material used. At a current density of 30 mA/cm2, the potential drop from the cathode electrode to the liquid electrolyte was measured to be −0.72 V for a solid Pt electrode and −0.69 V for the best Pt nanorod coated electrode.  相似文献   

9.
In water electrolysis, a major obstacle is the anodic reaction for water oxidation where substantial energy loss occurs mainly due to the large overpotential. Therefore, the electrocatalytic material of an anode is of importance to achieve a highly efficient water splitting reaction. Among the various requirements, the surface area of electrocatalysts has been considered a key factor in electrocatalytic reactions. In this study, to obtain a high surface area RuO2 electrocatalyst, a supercritical hydrothermal synthetic method was applied. Indeed, RuO2 particles with the surface area of 78.2 m2/g were successfully synthesized, which is 7 times higher compared with the commercial version. We also investigated the electrocatalytic activity of the synthesized high surface area RuO2 by evaluating the number of active sites and hydrogen production rates and compared them with the commercial one as a reference. Based on the cyclic voltammetric measurements, the number of active sites was estimated to be 152.1 mC cm−2 and 17.0 mC cm−2 for the synthetic and the commercial RuO2, respectively. More importantly, the hydrogen production rates measured by the water splitting device with RuO2 films for the anode showed 4 times higher value for the synthetic RuO2 compared with the commercial one.  相似文献   

10.
The nano-grain ZnO/SnO2 composite electrode was prepared by adding 5 w% of the 200-250 nm ZnO particles to the 5 nm SnO2 colloid in the presence of hydroxypropylcellulose (M.W.=80,000). The nano-grain SnO2 electrode was obtained by removing the ZnO particles from the composite electrode using acetic acid. The FE-SEM micrographs revealed that both electrodes consisted of interconnected nano-grains that were ca. 800 nm in size, and the large pores between the grains furnished the wide electrolyte diffusion channels within the electrodes. The photovoltaic properties of the nano-grain electrodes were investigated by measuring the I-V behaviors, the IPCE spectra and the ac-impedance spectra. The nano-grain electrodes exhibited remarkably improved conversion efficiencies of 3.96% for the composite and 2.98% for the SnO2 electrode compared to the value of 1.66% for the usual nano-particle SnO2 electrode. The improvement conversion efficiencies were mainly attributed to the formation of nano-grains, which facilitated the electron diffusion within the grains. The improved electrolyte diffusion as well as the light-scattering effects enhanced the photovoltaic performance of the SnO2 electrode.  相似文献   

11.
We report a comparative study of the alloy formation and electrochemical activity of dealloyed PtCo3 and PtCu3 nanoparticle electrocatalysts for the oxygen reduction reaction (ORR). For the Pt-Co system the maximum annealing temperatures were 650 °C, 800 °C and 900 °C for 7 h to drive the Pt-Co alloy formation and the particle growth. EDS and XRD were employed for the characterization of catalyst powders. The RDE and RRDE experiments were conducted in 0.1 M HClO4 at room temperature.We demonstrate that the mass and surface area specific ORR activities of Pt-Co and Pt-Cu alloys after voltammetric activation exhibit a considerable improvement compared to those of pure Pt/C. The dealloyed PtCo3 (800 °C/7 h) electrocatalyst performs 3 times higher in terms of Pt-based mass activity and 4-5 times higher in terms of ECSA-based specific activity than a 28.2 wt.% Pt/C. Dealloyed Pt-Co catalysts (800 °C/7 h) show the most favorable balance between mass and specific ORR activity with a particle size of 2.2 ± 0.1 nm. We hypothesize that geometric strain effects of the dealloyed Pt-Co nanoparticles, similar to those found in dealloyed PtCu3 nanoparticles, are responsible for the improvement in ORR activity [1].  相似文献   

12.
Innovative TiO2/SnO2 nanofibers were fabricated via electrospinning an innovated precursor solution and used for photocatalytic H2 generation. The nanofibers exhibited greatly enhanced H2 evolution rate compared to bare TiO2 nanofiber and P25. The enhanced efficiency of the TiO2/SnO2 nanofibers was attributed to its excellent synergistic properties: (1) its good mesoporosity; (2) the red-shift of absorbance spectra to enhance light absorbance capability; (3) its long nanofibrous structure and (4) anatase TiO2 – rutile TiO2 – rutile SnO2 ternary junctions favorable for the separation of electrons and holes. Based on our experimental results, the optimum ratio of TiO2/SnO2 nanofibers with 3% Sn demonstrated the highest efficiency in H2 generation.  相似文献   

13.
In Mexico, the National Electric System Development Program (PRODESEN 2022–2036) establishes the use of green hydrogen to be supplied in Combined Cycle Power Plants in a mixture of 70% CH4 and 30% H2 for electric energy generation. For those places where natural resources such as sun, wind, and water are available, the best option is to use alkaline electrolysers due to cost and lifetime. The oxygen evolution reaction (OER), which takes place at the anode, is the limiting factor in the performance of an alkaline electrolyser because large overpotentials are required to break the (O–H)- bond needed to form the double bond of the gaseous oxygen molecule (OO). Many studies under the initial research stage report using Ni–CeO2 as a promising catalyst toward OER, observing good catalytic activity and stability at low overpotentials. This work deposited electrodes with Ni and Ni–CeO2 films of 80 μm on AISI 304 Stainless steel substrates.A kinetic study was performed using linear sweep voltammetry to determine the Tafel slope of the OER. An electrolysis system was integrated with these anodic electrodes and tested for 500 h to determine the stability of films at real operating conditions using 15 wt% NaOH as electrolyte @ 0.5 A cm−2. A better OER activity of the modified Ni–CeO2 electrodes than Ni electrodes was obtained. Ni–CeO2 electrode shows an onset potential of 1.48 V, a potential of 1.56 V at 5 mA cm−2, and a Tafel slope of 75.71 mV dec−1, which is related to a reaction determining step in an oxidation process of (OH) via the one-electron transfer to the surface which is partial cover by OH species adsorbed. In the studies with the electrolyser test system, the Ni electrodes with an electrodeposited film of 80 μm showed good stability, and the film remained on the surface electrode.On the other hand, the electrode modified with Ni–CeO2 showed instability and high overpotentials as 500 h were completed. The last is attributed to the low conductivity of CeO2 and the formation of the passive NiO/NiOH2 layer on the electrode surface, which is not easily detached due to the presence of CeO2. These results confirm the importance of conducting tests in an electrolyser under real conditions.  相似文献   

14.
Self-assembled films from SnO2 and polyallylamine (PAH) were deposited on gold via ionic attraction by the layer-by-layer (LbL) method. The modified electrodes were immersed into a H2PtCl6 solution, a current of 100 μA was applied, and different electrodeposition times were used. The SnO2/PAH layers served as templates to yield metallic platinum with different particle sizes. The scanning tunnel microscopy images show that the particle size increases as a function of electrodeposition time. The potentiodynamic profile of the electrodes changes as a function of the electrodeposition time in 0.5 mol L−1 H2SO4, at a sweeping rate of 50 mV s−1. Oxygen-like species are formed at less positive potentials for the Pt–SnO2/PAH film in the case of the smallest platinum particles. Electrochemical impedance spectroscopy measurements in acid medium at 0.7 V show that the charge transfer resistance normalized by the exposed platinum area is 750 times greater for platinum electrode (300 kΩ cm2) compared with the Pt–SnO2/PAH film with 1 min of electrodeposition (0.4 kΩ cm2). According to the Langmuir–Hinshelwood bifunctional mechanism, the high degree of coverage with oxygen-like species on the platinum nanoparticles is responsible for the electrocatalytic activity of the Pt–SnO2/PAH concerning ethanol electrooxidation. With these features, this Pt–SnO2/PAH film may be grown on a proton exchange membrane (PEM) in direct ethanol fuel cells (DEFC).  相似文献   

15.
Organic–inorganic hybrid solid solar cells were fabricated by using a conjugated polymer (MDMO-PPV) and SnO2 nanoparticles chemically modified with C60C(COOH)2. The cell performance was improved by the chemical modification, suggesting that the modification with photoelectrochemically active organic materials is useful for establishing good electronic junction at the organic–inorganic interface. The short-circuit current density JSC increased with increasing thickness of MDMO-PPV up to 40 nm, and then decreased gradually. This thickness dependence was explained by the fluorescence quenching of MDMO-PPV by Au electrode and the film resistance of MDMO-PPV.  相似文献   

16.
Photo-assisted H2 evolution has been realized over the new heterosystem CuFeO2/SnO2 without any noble metal and was studied in connection with some physical parameters. The delafossite CuFeO2 has been prepared by thermal decomposition from various salts. The polarity of generated voltage is positive indicating that the materials exhibit p-type conductivity whereas the electroneutrality is achieved by oxygen insertion. The plot of the logarithm (conductivity) vs. T−1 gives average activation energy of 0.12 eV. CuFeO2 is a narrow band gap semiconductor with an optical gap of 1.32 eV. The oxide was characterized photoelectrochemically; its conduction band (−1.09 VRHE) is located below that of SnO2 (−0.86 VRHE) at pH ∼13.5 itself more negative than the H2O/H2 level leading to a thermodynamically favorable H2 evolution under visible irradiation. The sensitizer CuFeO2, working as an electron pump, is stable towards photocorrosion by hole consumption reactions involving the reducing agents X2− (=S2O32− and SO32−). The photoactivity was dependent on the precursor and the best performance (0.026 ml h−1 mg−1) was obtained in S2O32− (pH ∼13.5) over CuFeO2 synthesized from nitrate with a mass ratio (CuFeO2/SnO2) equal to unity. A quantum yield of 0.5% was obtained under polychromatic light. H2 liberation occurs concomitantly with the oxidation of S2O32− to dithionate and sulfate. The tendency towards saturation, in a closed system, is mainly ascribed to the competitive reduction of the end product S2O62−.  相似文献   

17.
This paper reports on the synthesis of SnO2 18 nm diameter colloidal suspension for the fabrication of nanoporous electrodes. The new suspension allows the fabrication of thick and homogeneous electrodes by simple one layer spreading; in contrast to the successive spin coating of the commonly used commercial suspension that results in a thin inhomogeneous electrode. When used in dye-sensitized solar cells, the new electrodes increase the light-to-energy conversion efficiency by a factor of 2.1 in comparison with standard commercial suspension based electrodes. The improvement is mostly the result of an increase of the photocurrent. This increase is attributed to the better electrolyte migration, and presumably also to an increase of the photoinjected electron diffusion rate in the electrode.  相似文献   

18.
RuO2 nanoparticles are synthesized by Instant method using Li2CO3 as stabilizing agent, under microwave irradiation at 60 °C and investigated for the anodic oxygen evolution reaction (OER) and for their supercapacitance properties in 0.5 M H2SO4 medium. Structural and morphological characterizations of RuO2 are investigated by in situ X-ray diffraction (XRD), thermogravimetric analysis (TG-DTA), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDS) and Raman spectroscopy. The TEM images of as prepared material show the uniform distribution of RuO2 nanoparticles with mean diameter of ca. 1.5 nm. Analysis on as prepared material indicates the structural formula as [RuO2·2.6H2O] 0.7H2O with low crystallinity. The influence of annealing temperature on RuO2 is studied in light of electrocatalytic activity for oxygen evolution reaction (OER) and capacitance. Electrochemical performances of RuO2 electrodes are followed by current-potential curves, galvanostatic charge-discharge cycles and evolved oxygen measurements. The amount of oxygen gas evolved during the OER by the crystalline RuO2 is found to be consistent with the electrical energy supplied to the catalyst. The cyclic voltammogram of RuO2 exhibits the typical capacitance behavior with highly reversible nature. The specific capacitance of hydrous RuO2 is found to be 737 F g−1 at the scan rate of 2 mV s−1, by the balanced transport of proton through the structural water and electron transport along dioxo bridges, which makes a suitable material for energy storage. The specific capacitance decreases with increase in the crystallinity of RuO2. The present study shows the potential method to synthesize rapid and uniform nano particles of RuO2 for water electrolysis and supercapacitors.  相似文献   

19.
CuFe2O4 supported on ZrO2 and CeO2 for two-step methane reforming was evaluated to determine if it could enhance the reactivity, CO selectivity and thermal stability of CuFe2O4. Two-step methane reforming consists of a syngas production step and a water splitting step. CuFe2O4 supported on ZrO2 and CeO2 was prepared using an aerial oxidation method. Non-isothermal methane reduction was carried out on TGA to compare the reactivity of CuFe2O4/ZrO2 and CuFe2O4/CeO2. In addition, a syngas production step was performed at 900 °C and water splitting was conducted at 800 °C alternatively five times to compare the methane conversion, CO selectivity, cycle ability and hydrogen production by water splitting in a fixed bed reactor. If the 1st syngas production step results are excluded due to over-oxidation, CuFe2O4/ZrO2 and CuFe2O4/CeO2 showed approximately 74.0–82.8% and 60.3–87.5% methane conversion, respectively, and 44.0–47.8% and 65.2–81.5% CO selectivity, respectively. Using CeO2 and ZrO2 as supports effectively improved the reactivity and methane conversion compared to CuFe2O4. CuFe2O4/ZrO2 showed high methane conversion due to the high phase stability and thermal stability of ZrO2 but the selectivity was not improved. After 5 successive cycles, the CeFeO3 phase was found on CuFe2O4/CeO2. Furthermore, methane conversion, CO selectivity and the amounts of hydrogen production of CuFe2O4/CeO2 increased with increasing number of cycles. Additional test up to the 11th cycle on CuFe2O4/CeO2 revealed that CeO2 is a better support that ZnO2 in terms of the reactivity and CO selectivity.  相似文献   

20.
Highly dispersed Pt and SnO2 double nanoparticles containing different Pt/Sn ratios (denoted as Pt/SnO2/CB) were prepared on carbon black (CB) by the modified Bönnemann method. The average size of Pt and SnO2 nanoparticles was 3.1 ± 0.5 nm and 2.5 ± 0.3 nm, respectively, in Pt/SnO2(3:1)/CB, 3.0 ± 0.5 nm and 2.6 ± 0.3 nm, respectively, in Pt/SnO2(1:1)/CB, and 2.8 ± 0.5 nm and 2.5 ± 0.3 nm, respectively, in Pt/SnO2(1:3)/CB. The Pt/SnO2(3:1)/CB electrode showed the highest specific activity and lowest overpotential for ethanol oxidation reaction (EOR), and was superior to a Pt/CB electrode. Current density for EOR at 0.40 and 0.60 V vs. reversible hydrogen electrode for the Pt/SnO2(3:1)/CB electrode decayed more slowly than that for the Pt/CB electrode because of a synergistic effect between Pt and SnO2 nanoparticles. The predominant reaction product was acetic acid, and its current efficiency was about 70%, while that for CO2 production was about 30%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号