首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A membrane reactor consisting of a dense self-supported Pd–Ag tube of wall thickness 60 μm has been filled with a Pt-based catalyst and used for producing pure hydrogen via oxidative steam reforming of bio-ethanol. The reformer feed stream consisted of water and ethanol with traces of glycerol and acetic acid in order to simulate a liquid waste of dairy industry after fermentation and concentration.  相似文献   

2.
A fluidized-bed membrane reformer was operated in two independent laboratories to map various operating conditions, to investigate the effects of changing the composition of the natural gas feed stream and to verify earlier experimental trials. Two feed natural gases were tested, containing either 95.5 or 90.1 mol% of methane (3.6 or 9.9 mol% of other gaseous higher hydrocarbons). Experimental tests investigated the influence of total membrane area, reactor pressure, permeate pressure and natural gas feed rates. A permeate-H2-to reactor natural gas feed molar ratio >2.3 was achieved with six two-sided membrane panels under steam reforming conditions and a pressure differential across the membranes of 785 kPa. The total cumulative reforming time reached 395 h, while hydrogen purity exceeded 99.99% during all tests.  相似文献   

3.
The feasibility of the steam reforming of bio-oil aqueous fraction and bio-ethanol mixtures has been studied in a continuous process with two in-line steps: thermal step at 300 °C (for the controlled deposition of pyrolytic lignin during the heating of the bio-oil/bio-ethanol feed) followed by steam reforming in a fluidized bed reactor on a Ni/α-Al2O3 catalyst. The effect of bio-ethanol content in the feed has been analyzed in both the thermal and reforming steps, and the suitable range of operating conditions (temperature and space-time) has been determined for obtaining a high and steady hydrogen yield. Higher ethanol content in the mixture feed improves the reaction indices and reduces coke deposition. Operating conditions of 700 °C and space-times higher than 0.23 gcatalyst h (gbio-oil+EtOH)−1 are suitable for attaining almost fully conversion of oxygenates (bio-oil and ethanol) and hydrogen yields above 93%, with low catalyst deactivation.  相似文献   

4.
Ethanol steam reforming in membrane reactors is a promising route for decentralized H2 production from biomass because H2 yield can be greatly enhanced due to the equilibrium shift triggered by instantaneous H2 extraction. Here a highly active Ir/CeO2 catalyst has been combined with ca. 4 μm thin Pd membranes employing a 6:1 steam/ethanol feed between 673 K and 873 K at reforming pressures up to 1.8 MPa. The H2 yield reached 94.5% at 873 K and 1300 kPa due to the separation of 91.8% H2 whereas H2 yield was limited to 28.9% without membrane. At lower temperatures and pressures sweep gas was needed at the membranes' permeate side for efficient H2 generation since the H2 partial pressure remains equilibrium-limited on the reaction side. Furthermore, the H2 yield improved from 63.0% to 84.7% at 773 K, 1500 kPa and sweep-to-feed flow ratio 0.5 when the distance between membrane and reactor wall was shortened by ca. 30%. Thus, external H2 diffusion towards the membrane has a large impact on membrane reactor performance pointing towards microstructured membrane reactors as optimum devices for sustainable H2 production from biomass.  相似文献   

5.
In this experimental study, a membrane reactor housing a composite membrane constituted by a thin Pd-layer supported onto Al2O3 is utilized to perform methanol steam reforming reaction to produce high-grade hydrogen for PEM fuel cell applications. The influence of various parameters such as temperature, from 280 to 330 °C, and pressure, from 1.5 to 2.5 bar, is analyzed. A commercial Cu/Zn-based catalyst is packed in the annulus of the membrane reactor and the experimental tests are performed at space velocity equal to 18,500 h−1 and H2O:CH3OH feed molar ratio equal to 2.5:1. Results in terms of methanol conversion, hydrogen recovery, hydrogen yield and products selectivities are given. As a best result of this work, 85% of methanol conversion and a highly pure hydrogen stream permeated through the membrane with a CO content lower than 10 ppm were reached at 330 °C and 2.5 bar. Furthermore, a comparison between the experimental results obtained in this work and literature data is proposed and discussed.  相似文献   

6.
Ethanol steam reforming in a membrane reactor with catalytic membranes was investigated to achieve important aims in one process, such as improvement in ethanol conversion and hydrogen yield, high hydrogen recovery and CO reduction. In order to confirm the efficiency of reaction and CO reduction, an ethanol reforming-catalytic membrane reactor with water–gas shift reaction (ECRW) in the permeate side was compared with a conventional reactor (CR) and an ethanol reforming-catalytic membrane reactor (ECR). In comparison with the CR, ethanol conversion improvement of 11.9–19% and high hydrogen recovery of 78–87% were observed in the temperature range of 300–600 °C in the ECRW. Compared with CR and ECR, the hydrogen yield of ECRW increased up to 38% and 30%, respectively. Particularly, the ECRW showed higher hydrogen yield at high temperature, because Pt/Degussa P25 loaded in the permeate side showed catalytic activity for the methane steam reforming as well as WGS reaction. Moreover, CO concentration was reduced under 1% by the WGS reaction in the permeate side in the temperature range of 300–500 °C.  相似文献   

7.
Volatile fatty acids (VFAs), easily produced using acid fermentation of biomass, were used to generate hydrogen via steam reforming. Three short-chain carboxylic acids (C2-C4) - acetic, propionic and butyric acids - were used as model compounds in addition to VFAs produced in a typical anaerobic batch reactor. Catalytic steam reforming of VFAs using alumina-supported platinum catalysts was studied in a fixed-bed quartz reactor at various temperatures between 300 and 600 °C. The influence of reaction conditions such as temperature, oxygen to carbon ratio (O/C) and gas hourly space velocity (GHSV) was investigated. VFAs were successfully converted to COx and hydrogen. A hydrogen yield of up to 70% was achieved, based on typical stoichiometry at 600 °C and a GHSV of 25,000 h−1. Temperature-programmed oxidation (TPO), X-ray diffraction (XRD) and pore size distribution (PSD) were used to characterize coke deposition. Graphitic carbon on catalysts was not identified by XRD, which implies that amorphous coke had formed in the small pores. The catalysts could be reactivated by oxidation and reduction. A detrimental effect on hydrogen yield was observed by adding a small amount of O2 to the VFA feed, due to the high concentration of oxygen in the feed composition. Steam reforming of real VFAs (S/C = 9) in the acid fermentation of food waste was performed with different GHSVs at a reaction temperature of 600 °C. Conversion of VFAs decreased significantly with increasing GHSV, but the hydrogen selectivity was still above 60%. The conversion pathways of the VFAs to COx and hydrogen are most likely complex, particularly due to the variety of the chemical compounds present in the real VFAs. The steam reforming of VFAs was investigated over various noble metal (Ruthenium, Palladium, Rodium, Nickel) catalysts supported on alumina, the specific activity based on the active surface area decreased in the order of Ru > Pd∼Rh > Pt > Ni.  相似文献   

8.
A dense tubular Pd–Ag membrane reactor was used to carry out the methanol steam reforming reaction for producing a CO-free hydrogen stream. A Cu/Zn/Mg-based catalyst was packed in the lumen side of the membrane reactor and the experimental tests were performed at a reaction temperature of 300 °C and at a H2O/methanol feed molar ratio of 3/1. The effects of the different flow configurations, as well as the sweep factor and the reaction pressure were analysed. Experimental results in terms of CO-free hydrogen recovery, hydrogen yield, CO-free hydrogen yield and hydrogen selectivity are presented. Moreover, a comparison between the performances of the membrane reactor and a traditional reactor working at the same operative conditions is proposed and discussed.  相似文献   

9.
An experimental test campaign has been carried out in order to investigate the performances in terms of pure hydrogen production of a multi-membrane module coupled with a methane reforming fixed bed reactor. The effect of operating parameters such as the temperature, the pressure, the water/methane feed flow rates and the feed molar ratio has been studied. The hydrogen produced into the traditional reformer has been recovered in the shell side of the membrane module by vacuum pumping. The membrane module consists of 19 Pd/Ag permeator tubes of wall thickness 150 μm, diameter 10 mm and length 250 mm: these dense permeators permitted to separate ultra-pure hydrogen.The experiments have been carried out with the reaction pressure of 100-490 kPa, the temperature of the reformer of 570-720 °C and the temperature of the Pd/Ag membranes module of 300-400 °C. A water/methane stream of molar ratio of 4/1 and 5/1 has been fed into the methane reformer at GSHV of 1547.6 and 1796.1 L(STP) kg−1 h−1. Hydrogen yield value of about 3 has been measured at reaction pressure of 350 kPa, temperature reformer of 720 °C and methane feed flow rate of 6.445 × 10−4 mol s−1.  相似文献   

10.
This report investigates the properties of nickel/gadolinium-doped ceria (Ni/GDC) as anode material for bio-ethanol fueled SOFC. The Ni/GDC cermets with 18 and 44 wt.% Ni were prepared by a hydrothermal method. Ethanol decomposition, steam reforming, and partial oxidation of ethanol were studied using a fixed-bed reactor at 1123 K. Carbon was formed only under dry ethanol for both catalysts. The addition of water or oxygen to the feed inhibited the formation of carbon. Ni/GDC was used as the anode current collector layer and as a catalytic layer in single cells tests. No deposits of carbon were detected in single cells with Ni/GDC catalytic layer after 50 h of continuous operation under direct (dry) ethanol. This result was attributed to the catalytic properties of the Ni/GDC layer and the operation mechanism of gradual internal reforming, in which the oxidation of hydrogen provides the steam for ethanol reforming, thus avoiding carbon deposition.  相似文献   

11.
The main objective of this project is to study the hydrogen production reaction from oxidative steam reforming of bio-ethanol in the pertinent characteristics of a palladium–silver alloy membrane reactor. The enhancements of hydrogen permeation and of H2/N2 permselectivity were studied in a Ni–Pd–Ag ternary alloy membrane, which was fabricated by successive electroless plating of palladium and silver on stainless steel (PSS) supports modified with nickel electroplating. XRD, SEM, and EDS were used to characterize the surface morphology of the membranes. Ethanol–water mixture (nwater/nethanol = 1 or 3) and oxygen (noxygen/nethanol = 0.2 or 0.7) were fed concurrently into the membrane reactor packed with Zn–Cu commercial catalyst (MDC-3). The reaction temperatures were set at temperatures of 593–723 K and pressures of 3–10 atm. The amount of oxygen added in the feed has a significant effect on the steam reforming reaction of ethanol. At high pressures, autothermal reaction of ethanol with no need for external heating to the composite membrane reactor to produce high purity hydrogen was easily processed.  相似文献   

12.
The paper aims to investigate the steam reforming of biogas in an industrial-scale reformer for hydrogen production. A non-isothermal one dimensional reactor model has been constituted by using mass, momentum and energy balances. The model equations have been solved using MATLAB software. The developed model has been validated with the available modeling studies on industrial steam reforming of methane as well as with the those on lab-scale steam reforming of biogas. It demonstrates excellent agreement with them. Effect of change in biogas compositions on the performance of industrial steam reformer has been investigated in terms of methane conversion, yields of hydrogen and carbon monoxide, product gas compositions, reactor temperature and total pressure. For this, compositions of biogas (CH4/CO2 = 40/60 to 80/20), S/C ratio, reformer feed temperature and heat flux have been varied. Preferable feed conditions to the reformer are total molar feed rate of 21 kmol/h, steam to methane ratio of 4.0, temperature of 973 K and pressure of 25 bar. Under these conditions, industrial reformer fed with biogas, provides methane conversion (93.08–85.65%) and hydrogen yield (1.02–2.28), that are close to thermodynamic equilibrium condition.  相似文献   

13.
Analysis of the effect of adding small amounts of steam to the methane dry reforming feed on activity and products distribution was performed from thermodynamic equilibrium calculations of the system based on the Gibbs free energy minimization method. This analysis is supported by new insights from the direct experimental investigation of the influence of co-feeding with H2O over a Ru/ZrO2-La2O3 catalyst. Activity measurements were carried out in a fixed-bed reactor but using the operating conditions applicable in a Pd membrane reactor, that is, at maximum reaction temperature below 550 °C. Experimental results were in good agreement with thermodynamics predictions. It was observed that the addition of H2O into the dry reforming feed strongly affects activity and products distribution. The co-feeding of steam resulted in increasing methane conversion and hydrogen yield but decreasing carbon dioxide conversion and carbon monoxide yield. At a given temperature, syngas composition (H2/CO ratio) can be tuned by changing the amount of H2O co-fed. Interestingly the stability of the Ru/ZrO2-La2O3 catalyst was improved by adding steam to the dry reforming reactant mixtures.  相似文献   

14.
In this experimental work, a dense tubular Pd–Ag membrane reactor is used for carrying out the acetic acid steam reforming reaction for producing a CO-free hydrogen stream. The influence of the different flow configurations, as well as the sweep factor and the reaction pressure is analysed. A Ni-based commercial catalyst was packed in the lumen side of the membrane reactor and the experimental tests were performed at a reaction temperature of 400 °C and at a H2O/acetic acid feed molar ratio of 10/1. Results in terms of CO-free hydrogen recovery, hydrogen yield and products selectivities are proposed. Moreover, a comparison between the performances of the membrane reactor and a traditional reactor working at the same operative conditions is illustrated and discussed.  相似文献   

15.
Olivine, a natural mineral consisting of different metal oxides (mainly Mg, Si and Fe oxides) was used as a support for nickel catalyst used in steam reforming of ethanol. Catalyst containing different wt% of Ni on olivine were prepared by conventional wet-impregnation method and characterized by BET, XRD, SEM (coupled with EDS) and H2-TPR. The reaction was carried out in a tubular fixed bed reactor. Among all the catalysts, 5% Ni on olivine catalyst gave highest hydrogen yield as well as ethanol conversion through ethanol steam reforming reaction. The catalyst activity was analyzed by varying three important process parameters (temperature, ethanol to water molar ratio and space-time). The reaction was performed in the temperature range of 450 °C to 550 °C with 1:6 to 1:12 M feed ratio of ethanol to water at a space-time range 7.21–15.87 kg cat h/kmol ethanol. A maximum yield of 4.62 mol of hydrogen per mole of ethanol reacted was obtained at 550 °C with ethanol to steam molar ratio of 1:10 and space-time of 7.94 kg cat h/kmol ethanol with the ethanol conversion level of 97%. CHNS analysis of the spent catalyst was performed to find the coke deposited over the catalyst surface during the reaction. The power law and LHHW type kinetic models were developed. The power law model predicts the activation energy as 29.07 kJ/mol, whereas the LHHW type model gives the activation energy as 27.4 kJ/mol.  相似文献   

16.
In this paper an ethanol reformer based on catalytic steam reforming with a catalytic honeycomb loaded with RhPd/CeO2 and palladium separation membranes with an area of 30.4 cm2 has been used to generate a pure hydrogen stream of up to 100 ml/min to feed a PEM fuel cell with an active area of 5 cm2. The fuel reformer behavior has been extensively studied under different temperature, ethanol–water flow rate and gas pressure at a fixed S/C ratio of 1.6 (molar). The hydrogen yield has been controlled by acting upon the ethanol–water fuel flow and gas pressure.  相似文献   

17.
Nowadays, there is a growing interest towards pure hydrogen production for proton exchange membrane fuel cell applications. Methane steam reforming reaction is one of the most important industrial chemical processes for hydrogen production. This reaction is usually carried out in fixed bed reactors at 30–40 bar and at temperatures above 850 °C. In this work, a dense Pd–Ag membrane reactor packed with a Ni-based catalyst was used to carry out the methane steam reforming reaction between 400 and 500 °C and at relatively low pressure (1.0–3.0 bar) with the aim of obtaining higher methane conversion and hydrogen yield than a fixed bed reactor, operated at the same conditions. Furthermore, the Pd–Ag membrane reactor is able to produce a pure, or at least, a CO and CO2 free hydrogen stream. A 50% methane conversion was experimentally achieved in the membrane reactor at 450 °C and 3.0 bar whereas, at the same conditions, the fixed bed reactor reached a 6% methane conversion. Moreover, 70% of high-purity hydrogen on total hydrogen produced was collected with the sweep-gas in the permeate stream of the membrane reactor. From a modeling point of view, the mathematical model realized for the simulation of both the membrane and fixed bed reactors was satisfactorily validated with the experimental results obtained in this work.  相似文献   

18.
An innovative steam reformer for hydrogen production at temperatures lower than 550 °C has been developed in the EU project CoMETHy (Compact Multifuel-Energy To Hydrogen converter). The steam reforming process has been specifically tailored and re-designed to be combined with Concentrating Solar plants using “solar salts”: a low-temperature steam reforming reactor was developed, operating at temperatures up to 550 °C, much lower than the traditional process (usually > 850 °C). This result was obtained after extensive research, going from the development of basic components (catalysts and membranes) to their integration in an innovative membrane reformer heated with molten salts, where both hydrogen production and purification occur in a single stage. The reduction of process temperatures is achieved by applying advanced catalyst systems and hydrogen selective Pd-based membranes. Process heat is supplied by using a low-cost and environmentally friendly binary NaNO3/KNO3 liquid mixture (60/40 w/w) as heat transfer fluid; such mixture is commonly used for the same purpose in the concentrating solar industry, so that the process can easily be coupled with concentrating solar power (CSP) plants for the supply of renewable process heat. This paper deals with the successful operation and validation of a pilot scale reactor with a nominal capacity of 2 Nm3/h of pure hydrogen from methane. The plant was operated with molten salt circulation for about 700 h, while continuous operation of the reactor was achieved for about 150 h with several switches of operating conditions such as molten salts inlet temperature, sweep steam flow rate and steam-to-carbon feed ratio. The results obtained show that the membrane reformer allows to achieve twice as high a conversion compared to a conventional reformer operating at thermodynamic equilibrium under the same conditions considered in this paper. A highly pure hydrogen permeate stream was obtained (>99.8%), while the outlet retentate stream had low CO concentration (<2%). No macroscopic signs of reactor performance loss were observed over the experimental operation period.  相似文献   

19.
A novel concept for hydrogen generation by methane steam reforming in a thermally coupled catalytic fixed bed membrane reformer is experimentally demonstrated. The reactor, built from three concentric compartments, indirectly couples the endothermic methane steam reforming with the exothermic methane oxidation, while hydrogen is separated by a permselective Pd membrane. The study focuses on the determination of the key operation parameters and understanding their influence on the reactor performance. It has been shown that the reactor performance is mainly defined by the dimensionless ratio of the methane steam reforming feed flow rate to the hydrogen maximal membrane flow rate and by the ratio of the oxidation and steam reforming methane feed flow rates.  相似文献   

20.
The object of the present study was to study the role of alcohols, which are the major impurities found in a crude bioethanol feed, on the catalytic performances of a 1%Rh/MgAl2O4/Al2O3 catalyst during ethanol steam reforming. The alcohols studied were methanol, propan-1-ol, butan-1-ol, pentan-1-ol, isopropanol, 2-methyl propan-1-ol, 3-methyl butan-1-ol. Whereas the presence of 1% of methanol in the ethanol and water feed only slightly increased the hydrogen yield, the addition of the same amount of higher alcohols strongly decreased the stability of the catalyst during ethanol steam reforming, with a direct impact on the ethanol conversion and the hydrogen yield. It was shown that the deactivation is increased when the amount of carbon atoms in the molecule is increased. This effect is more pronounced in the presence of branched alcohols compared to the linear ones. It was demonstrated by studying the steam reforming of these higher alcohols that they are dehydrated to the corresponding olefin. The strong deactivation of the catalyst observed in the presence of higher alcohols was explained in terms of coke deposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号