首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel Ba0.5Sr0.5Co0.8Fe0.2O3 − δ + LaCoO3 (BSCF + LC) composite oxide was investigated for the potential application as a cathode for intermediate-temperature solid-oxide fuel cells based on a Sm0.2Ce0.8O1.9 (SDC) electrolyte. The LC oxide was added to BSCF cathode in order to improve its electrical conductivity. X-ray diffraction examination demonstrated that the solid-state reaction between LC and BSCF phases occurred at temperatures above 950 °C and formed the final product with the composition: La0.316Ba0.342Sr0.342Co0.863Fe0.137O3 − δ at 1100 °C. The inter-diffusion between BSCF and LC was identified by the environmental scanning electron microscopy and energy dispersive X-ray examination. The electrical conductivity of the BSCF + LC composite oxide increased with increasing calcination temperature, and reached a maximum value of ∼300 S cm−1 at a calcination temperature of 1050 °C, while the electrical conductivity of the pure BSCF was only ∼40 S cm−1. The improved conductivity resulted in attractive cathode performance. An area-specific resistance as low as 0.21 Ω cm2 was achieved at 600 °C for the BSCF (70 vol.%) + LC (30 vol.%) composite cathode calcined at 950 °C for 5 h. Peak power densities as high as ∼700 mW cm−2 at 650 °C and ∼525 mW cm−2 at 600 °C were reached for the thin-film fuel cells with the optimized cathode composition and calcination temperatures.  相似文献   

2.
Ba0.5Sr0.5Co0.6Fe0.4O3−δ(BSCF5564) was synthesized by nitric acid aided EDTA–citric acid complexing sol-gel method (NECC). Both, the phase formation temperature and time of BSCF5564 synthesized NECC were found to be low i.e. single perovskite phase formation temperature is 200 °C less as compared to the conventional method of synthesis. The orthorhombic perovskite structure has been formed after calcination at 800 °C for 5 h. Scanning electron microscopy reveals the formation of porous material constituting nano-sized and irregularly shaped rod-like structure with particle size approximately ranges from 90 to 160 nm. The total weight loss of the BSCF5564 sample comes out to be 6.6%, indicating that quadrivalence state Co4+ and Fe4+ in the sample have been completely reduced to the trivalent state Co3+ and Fe3+ due to thermal analysis. The value of Ea for BSCF5564 prepared by NECC was 0.2288 eV. The electrical conductivity of BSCF5564 synthesized by NECC is observed to be steady at high temperature (above 700 °C).  相似文献   

3.
The mesoporous Co3O4 supported catalysts on Ce–M–O (M = Mn, Zr, Sn, Fe and Ti) composites were prepared by surfactant-assisted co-precipitation with subsequent incipient wetness impregnation (SACP–IWI) method. The catalysts were employed to eliminate trace CO from H2-rich gases through CO preferential oxidation (CO PROX) reaction. Effects of M type in Ce–M–O support, atomic ratio of Ce/(Ce + Mn), Co3O4 loading and the presence of H2O and CO2 in feed were investigated. Among the studied Ce–M–O composites, the Ce–Mn–O is a superior carrier to the others for supported Co3O4 catalysts in CO PROX reaction. Co3O4/Ce0.9Mn0.1O2 with 25 wt.% loading exhibits excellent catalytic properties and the 100% CO conversion can be achieved at 125–200 °C. Even with 10 vol.% H2O and 10 vol.% CO2 in feed, the complete CO transformation can still be maintained at a wide temperature range of 190–225 °C. Characterization techniques containing N2 adsorption/desorption, X-ray diffraction (XRD), H2 temperature-programmed reduction (H2-TPR) and scanning electron microscopy (SEM) were employed to reveal the relationship between the nature and catalytic performance of the developed catalysts. Results show that the specific surface area doesn’t obviously affect the catalytic performance of the supported cobalt catalysts, but the right M type in carrier with appropriate amount effectively improves the Co3O4 dispersibility and the redox behavior of the catalysts. The large reducible Co3+ amount and the high tolerance to reduction atmosphere resulted from the interfacial interaction between Co3O4 and Ce–Mn support may significantly contribute to the high catalytic performance for CO PROX reaction, even in the simulated syngas.  相似文献   

4.
Submicron-sized LiNi1/3Co1/3Mn1/3O2 cathode materials were synthesized using a simple self-propagating solid-state metathesis method with the help of ball milling and the following calcination. A mixture of Li(ac)·2H2O, Ni(ac)2·4H2O, Co(ac)2·4H2O, Mn(ac)2·4H2O (ac = acetate) and excess H2C2O4·2H2O was used as starting material without any solvent. XRD analyses indicate that the LiNi1/3Co1/3Mn1/3O2 materials were formed with typical hexagonal structure. The FESEM images show that the primary particle size of the LiNi1/3Co1/3Mn1/3O2 materials gradually increases from about 100 nm at 700 °C to 200–500 nm at 950 °C with increasing calcination temperature. Among the synthesized materials, the LiNi1/3Co1/3Mn1/3O2 material calcined at 900 °C exhibits excellent electrochemical performance. The steady discharge capacities of the material cycled at 1 C (160 mA g−1) rate are at about 140 mAh g−1 after 100 cycles in the voltage range 3–4.5 V (versus Li+/Li) and the capacity retention is about 87% at the 350th cycle.  相似文献   

5.
Porous Co3O4 nanostructured thin films are electrodeposited by controlling the concentration of Co(NO3)2 aqueous solution on nickel sheets, and then sintered at 300 °C for 3 h. The as-prepared thin films are characterized by thermogravimetric analysis (TGA), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The electrochemical measurements show that the highly porous Co3O4 thin film with the highest electrochemically active specific surface area (68.64 m2 g−1) yields the best electrochemical performance compared with another, less-porous film and with a non-porous film. The highest specific capacity (513 mAh g−1 after 50 cycles) is obtained from the thinnest film with Co3O4 loaded at rate of 0.05 mg cm−2. The present research demonstrates that electrode morphology is one of the crucial factors that affect the electrochemical properties of electrodes.  相似文献   

6.
In this paper we report the solution combustion synthesis of cobalt oxide nanofoam from solutions of cobalt nitrate and glycine and subsequent use as an effective catalyst precursor for NaBH4 hydrolysis. The catalytic activity results show that the hydrogen generation rate (HGR) at room temperature was much higher for the solution combustion synthesized material than for commercial Co3O4 nanopowder, though their specific surface areas were comparable (∼26–32 m2/g). Using a 0.6 wt.% aqueous solution of NaBH4 at 20 °C and a 5 wt.% catalyst precursor loading, a HGR of 1.93 L min−1 gcat−1 was achieved for solution combustion synthesized Co3O4. In contrast, at the same conditions, for commercial Co3O4 and elemental Co powders HGRs of 0.98 and 0.49 L min−1 gcat−1 were achieved respectively. This type of synthesis is amenable to many complex metal oxide catalysts as well, such as LiCoO2, which have also been shown to be good catalyst precursors for hydrolysis of NaBH4.  相似文献   

7.
Polycrystalline CuIn0.7Ga0.3Se2 thin films were prepared on soda-lime glass substrates using pulsed laser deposition (PLD) with various process parameters such as laser energy, repetition rate and substrate temperature. It was confirmed that there existed a limited laser energy, i.e. less than 300 mJ, to get phase pure CIGS thin films at room temperature. Particularly, even at room temperature, distinct crystalline CIGS phase was observed in the films. Crystallinity of the films improved with increasing substrate temperature as evidenced by the decrease of FWHM from 0.65° to 0.54°. Slightly Cu-rich surface with Cu2−xSe phase was confirmed to exist by Raman spectra, depending on substrate temperature. Improved electrical properties, i.e., carrier concentration of ∼1018 cm−3 and resistivity of 10−1 Ω cm at higher substrate temperature for the optimal CIGS films are assumed to be induced by the potential contributions from highly crystallized thin films, existence of Cu2−xSe phase and diffusion of Na from substrates to films.  相似文献   

8.
CoFe2O4 has been demonstrated as a potential spinel coating for protecting the Cr-containing ferritic interconnects. This spinel had an electrical conductivity of 0.85 S cm−1 at 800 °C in air and an average coefficient of thermal expansion (CTE) of 11.80 × 10−6 K−1 from room temperature to 800 °C. A series of Co-Fe alloys were co-deposited onto the Crofer 22 APU ferritic steel via electroplating with an acidic chloride solution. After thermal oxidation in air at 800 °C, a CoFe2O4 spinel layer was attained from the plated Co0.40Fe0.60 film. Furthermore, a channeled Crofer 22 APU interconnect electrodeposited with a 40-μm Co0.40Fe0.60 alloy film as a protective coating was evaluated in a single-cell configuration. The presence of the dense, Cr-free CoFe2O4 spinel layer was effective in blocking the Cr migration/transport and thus contributed to the improvement in cell performance stability.  相似文献   

9.
In an effort to improve the performance of SUS 430 alloy as a metallic interconnect material, a low cost and Cr-free spinel coating of NiMn2O4 is prepared on SUS 430 alloy substrate by the sol-gel method and evaluated in terms of the microstructure, oxidation resistance and electrical conductivity. A oxide scale of 3-4 μm thick is formed during cyclic oxidation at 750 °C in air for 1000 h, consisting of an inner layer of doped Cr2O3 and an outer layer of doped NiMn2O4 and Mn2O3; and the growth of Cr2O3 and formation of MnCr2O4 are depressed. The oxidation kinetics obeys the parabolic law with a rate constant as low as 4.59 × 10−15 g2 cm−4 s−1. The area specific resistance at temperatures between 600 and 800 °C is in the range of 6 and 17 mΩ cm2. The above results indicate that NiMn2O4 is a promising coating material for metallic interconnects of the intermediate temperature solid oxide fuel cells.  相似文献   

10.
K2NiF4-type structure oxides La2Cu1−xCoxO4 (x = 0.1, 0.2, 0.3) are synthesized and evaluated as cathode materials for intermediate temperature solid oxide fuel cells (IT-SOFCs). The materials are characterized by XRD, SEM and electrochemical impedance spectrum (EIS), respectively. The results show that no reaction occurs between La2Cu1−xCoxO4 electrode and Ce0.9Gd0.1O1.95 (CGO) electrolyte at 1000 °C. The electrode forms good contact with the electrolyte after sintering at 800 °C for 4 h in air. The electrode properties of La2Cu1−xCoxO4 are studied under various temperatures and oxygen partial pressures. The optimum composition of La2Cu0.8Co0.2O4 results in 0.51 Ω cm2 polarization resistance (Rp) at 700 °C in air. The rate limiting step for oxygen reduction reaction (ORR) is the charge transfer process. La2Cu0.8Co0.2O4 cathode exhibits the lowest overpotential of about 50 mV at a current density of 48 mA cm−2 at 700 °C in air.  相似文献   

11.
In this study, various nanoscale metal oxide catalysts, such as CeO2, TiO2, Fe2O3, Co3O4, and SiO2, were added to the LiBH4/2LiNH2/MgH2 system by using high-energy ball milling. Temperature programmed desorption and MS results showed that the Li–Mg–B–N–H/oxide mixtures were able to dehydrogenate at much lower temperatures. The order of the catalytic effect of the studied oxides was Fe2O3 > Co3O4 > CeO2 > TiO2 > SiO2. The onset dehydrogenation temperature was below 70 °C for the samples doped with Fe2O3 and Co3O4 with 10 wt.%. More than 5.4 wt.% hydrogen was released at 140 °C. X-ray diffraction indicated that the addition of metal oxides inhibited the formation of Mg(NH2)2 during ball milling processes. It is thought that the changing of the ball milling products results from the interaction of oxide ions in metal oxide catalysts with hydrogen atoms in MgH2. The catalytic effect depends on the activation capability of oxygen species in metal oxides on hydrogen atoms in hydrides.  相似文献   

12.
Nano-crystalline (Ba0.5Sr0.5)Co0.8Fe0.2O3−δ powder has been successfully synthesized by a novel sol–gel thermolysis method using a unique combination of PVA and urea. The decomposition and crystallization behaviour of the gel precursor was studied by TG/DTA analysis. The gel precursor was calcined at different temperatures and the phase evoluation was studied by X-ray diffraction (XRD) analysis. From the result of X-ray diffraction patterns, it is found that a cubic perovskite (Ba0.5Sr0.5)Co0.8Fe0.2O3−δ was formed by calcining the precursor at 450 °C for 5 h, but the well-crystalline cubic perovskite (Ba0.5Sr0.5)Co0.8Fe0.2O3−δ was obtained by calcining the precursor at 650 °C for 5 h. Morphological analysis of the powder calcined at various temperatures was done by scanning electron microscope (SEM). Thermogravimetric (TG) results showed the lattice oxygen loss of the product was about ∼2% in its original weight in the temperature range 40–900 °C. Finally, thermal expansion and electrical conductivity of the synthesized material were measured by dilatometer and four-probe dc method, respectively.  相似文献   

13.
Structural changes and their relationship with thermal stability of charged Li0.33Ni1/3Co1/3Mn1/3O2 cathode samples have been studied using time-resolved X-ray diffraction (TR-XRD) in a wide temperature from 25 to 600 °C with and without the presence of electrolyte in comparison with Li0.27Ni0.8Co0.15Al0.05O2 cathodes. Unique phase transition behavior during heating is found for the Li0.33Ni1/3Co1/3Mn1/3O2 cathode samples: when no electrolyte is present, the initial layered structure changes first to a LiM2O4-type spinel, and then to a M3O4-type spinel and remains in this structure up to 600 °C. For the Li0.33Ni1/3Co1/3Mn1/3O2 cathode sample with electrolyte, additional phase transition from the M3O4-type spinel to the MO-type rock salt phase takes place from about 400 to 441 °C together with the formation of metallic phase at about 460 °C. The major difference between this type of phase transitions and that for Li0.27Ni0.8Co0.15Al0.05O2 in the presence of electrolyte is the delayed phase transition from the spinel-type to the rock salt-type phase by stretching the temperature range of spinel phases from about 20 to 140 °C. This unique behavior is considered as the key factor of the better thermal stability of the Li1−xNi1/3Co1/3Mn1/3O2 cathode materials.  相似文献   

14.
This study presents the electrochemical performance of (Ba0.5Sr0.5)0.9Sm0.1Co0.8Fe0.2O3−δ (BSSCF) as a cathode material for intermediate temperature solid oxide fuel cells (IT-SOFC). AC-impedance analyses were carried on an electrolyte supported BSSCF/Sm0.2Ce0.8O1.9 (SDC)/Ag half-cell and a Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF)/SDC/Ag half-cell. In contrast to the BSCF cathode half-cell, the total resistance of the BSSCF cathode half-cell was lower, e.g., at 550 °C; the values for the BSSCF and BSCF were 1.54 and 2.33 Ω cm2, respectively. The cell performance measurements were conducted on a Ni-SDC anode supported single cell using a SDC thin film as electrolyte, and BSSCF layer as cathode. The maximum power densities were 681 mW cm−2 at 600 °C and 820 mW cm−2 at 650 °C.  相似文献   

15.
A dense membrane of Ce0.9Gd0.1O1.95 on a porous cathode based on a mixed conducting La0.6Sr0.4Co0.2Fe0.8O3−δ was fabricated via a slurry coating/co-firing process. With the purpose of matching of shrinkage between the support cathode and the supported membrane, nano-Ce0.9Gd0.1O1.95 powder with specific surface area of 30 m2 g−1 was synthesized by a newly devised coprecipitation to make the low-temperature sinterable electrolyte, whereas 39 m2 g−1 nano-Ce0.9Gd0.1O1.95 prepared from citrate method was added to the cathode to favor the shrinkage for the La0.6Sr0.4Co0.2Fe0.8O3−δ. Bi-layers consisting of <20 μm dense ceria film on 2 mm thick porous cathode were successfully fabricated at 1200 °C. This was followed by co-firing with NiO–Ce0.9Gd0.1O1.95 at 1100 °C to form a thin, porous, and well-adherent anode. The laboratory-sized cathode-supported cell was shown to operate below 600 °C, and the maximum power density obtained was 35 mW cm−2 at 550 °C, 60 mW cm−2 at 600 °C.  相似文献   

16.
Composite cathodes of La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) and Y2O3 stabilized ZrO2 (YSZ) are fabricated by impregnating the porous YSZ scaffold pre-formed on YSZ electrolyte substrate with a solution containing La, Sr, Co and Fe in desired composition. The performance stability of the cathodes is evaluated in air at 750 °C for up to 120 h by electrochemical impedance spectroscopy under the condition of open circuit. An insignificant small amount of resistive phase SrZrO3 is formed at 800 °C during cathode preparation; however, its volume is not further increased at 750 °C for 120 h, as indicated by the XRD results. The cathode polarization resistance (Rp) increases from 0.17 to 0.30 Ωcm2 after the 120 h test mainly due to the increase of the low frequency polarization resistance (Rp2), which characterizes the low frequency processes in the reaction of oxygen reduction. The morphology change of the well connected LSCF particles to dispersive and flattened configuration accounts for the increase of the Rp2 and in turn the degradation of cathode performance.  相似文献   

17.
Unloaded and 0.25–1.0 wt% Pt-loaded WO3 nanoparticles were synthesized by hydrothermal method using sodium tungstate dihydrate and sodium chloride as precursors in an acidic condition and impregnated using platinum acetylacetonate. Pt-loaded WO3 films on an Al2O3 substrate with interdigitated Au electrodes were prepared by spin-coating technique. The response of WO3 sensors with different Pt-loading concentrations was tested towards 0.01–1.0 vol% of H2 in air as a function of operating temperature (200–350 °C). The 1.0 wt% Pt-loaded WO3 sensing film showed the highest response of ∼2.16 × 104 to 1.0 vol% H2 at 250 °C. Therefore, an operating temperature of 250 °C was optimal for H2 detection. The responses of 1.0 wt% Pt-loaded WO3 sensing film to other flammable gases, including C2H5OH, C2H4 and CO, were considerably less, demonstrating Pt-loaded WO3 sensing film to be highly selective to H2.  相似文献   

18.
Layer Li[Ni0.4Co0.2Mn0.4]O2 and lithium excess spinel Li[Li0.1Al0.05Mn1.85]O4 were compared as positive electrode materials for high power lithium-ion batteries. Physical properties were examined by Rietveld refinement of X-ray diffraction pattern and scanning electron microscopic studies. From continuous charge and discharge tests at higher currents and different temperature environments using 3Ah class lithium-ion batteries, it was found that both materials presented plausible battery performances such as rate capability, cyclability at 60 °C at elevated temperature, and low temperature properties as well.  相似文献   

19.
The structural changes of the composite cathode made by mixing spinel LiMn2O4 and layered LiNi1/3Co1/3Mn1/3O2 in 1:1 wt% in both Li-half and Li-ion cells during charge/discharge are studied by in situ XRD. During the first charge up to ∼5.2 V vs. Li/Li+, the in situ XRD spectra for the composite cathode in the Li-half cell track the structural changes of each component. At the early stage of charge, the lithium extraction takes place in the LiNi1/3Co1/3Mn1/3O2 component only. When the cell voltage reaches at ∼4.0 V vs. Li/Li+, lithium extraction from the spinel LiMn2O4 component starts and becomes the major contributor for the cell capacity due to the higher rate capability of LiMn2O4. When the voltage passed 4.3 V, the major structural changes are from the LiNi1/3Co1/3Mn1/3O2 component, while the LiMn2O4 component is almost unchanged. In the Li-ion cell using a MCMB anode and a composite cathode cycled between 2.5 V and 4.2 V, the structural changes are dominated by the spinel LiMn2O4 component, with much less changes in the layered LiNi1/3Co1/3Mn1/3O2 component, comparing with the Li-half cell results. These results give us valuable information about the structural changes relating to the contributions of each individual component to the cell capacity at certain charge/discharge state, which are helpful in designing and optimizing the composite cathode using spinel- and layered-type materials for Li-ion battery research.  相似文献   

20.
Surface structures of the bare and AlPO4-coated LiNi0.8Co0.2O2 particles in two electrolytes after 90 °C for 4 h storage were investigated using transmission electron microscope (TEM). The structure of bare LiNi0.8Co0.2O2 particles in common electrolyte has been destructed from the layered structure with space group R-3m at interior region to a rock-salt phase (Fm-3m) at edge of the surface layer of the cycled particles, while AlPO4-coated LiNi0.8Co0.2O2 particles in common electrolyte has been transformed into a spinel phase (Fd-3m) on the surfaces of the cycled particles. However, the surface structure of bare LiNi0.8Co0.2O2 particles in functional electrolyte has not been changed. The results showed that functional electrolyte can more effectively improve thermal stability of LiNi0.8Co0.2O2 cathode cells than the AlPO4 coating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号