首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fuel consumption from vehicles of China until 2030 in energy scenarios   总被引:1,自引:0,他引:1  
Estimation of fuel (gasoline and diesel) consumption for vehicles in China under different long-term energy policy scenarios is presented here. The fuel economy of different vehicle types is subject to variation of government regulations; hence the fuel consumption of passenger cars (PCs), light trucks (Lts), heavy trucks (Hts), buses and motor cycles (MCs) are calculated with respect to (i) the number of vehicles, (ii) distance traveled, and (iii) fuel economy. On the other hand, the consumption rate of alternative energy sources (i.e. ethanol, methanol, biomass-diesel and CNG) is not evaluated here. The number of vehicles is evaluated using the economic elastic coefficient method, relating to per capita gross domestic product (GDP) from 1997 to 2007. The Long-range Energy Alternatives Planning (LEAP) system software is employed to develop a simple model to project fuel consumption in China until 2030 under these scenarios. Three energy consumption decrease scenarios are designed to estimate the reduction of fuel consumption: (i) ‘business as usual’ (BAU); (ii) ‘advanced fuel economy’ (AFE); and (iii) ‘alternative energy replacement’ (AER). It is shown that fuel consumption is predicted to reach 992.28 Mtoe (million tons oil equivalent) with the BAU scenario by 2030. In the AFE and AER scenarios, fuel consumption is predicted to be 734.68 and 600.36 Mtoe, respectively, by 2030. In the AER scenario, fuel consumption in 2030 will be reduced by 391.92 (39.50%) and 134.29 (18.28%) Mtoe in comparison to the BAU and AFE scenarios, respectively. In conclusion, our models indicate that the energy conservation policies introduced by governmental institutions are potentially viable, as long as they are effectively implemented.  相似文献   

2.
Advanced vehicles and alternative fuels could play an important role in reducing oil use and changing the economy structure. We developed the Costs for Advanced Vehicles and Energy (CAVE) model to investigate a vehicle portfolio scenario in California during 2010-2030. Then we employed a computable general equilibrium model to estimate macroeconomic impacts of the advanced vehicle scenario on the economy of California. Results indicate that, due to slow fleet turnover, conventional vehicles are expected to continue to dominate the on-road fleet and gasoline is the major transportation fuel over the next two decades. However, alternative fuels could play an increasingly important role in gasoline displacement. Advanced vehicle costs are expected to decrease dramatically with production volume and technological progress; e.g., incremental costs for fuel cell vehicles and hydrogen could break even with gasoline savings in 2028. Overall, the vehicle portfolio scenario is estimated to have a slightly negative influence on California's economy, because advanced vehicles are very costly and, therefore, the resulting gasoline savings generally cannot offset the high incremental expenditure on vehicles and alternative fuels. Sensitivity analysis shows that an increase in gasoline price or a drop in alternative fuel prices could offset a portion of the negative impact.  相似文献   

3.
The ‘Hydrogen Economy’ is a proposed system where hydrogen is produced from carbon dioxide free energy sources and is used as an alternative fuel for transportation. The utilization of hydrogen to power fuel cell vehicles (FCVs) can significantly decrease air pollutants and greenhouse gases emission from the transportation sector. In order to build the future hydrogen economy, there must be a significant development in the hydrogen infrastructure, and huge investments will be needed for the development of hydrogen production, storage, and distribution technologies. This paper focuses on the analysis of hydrogen demand from hydrogen FCVs in Ontario, Canada, and the related cost of hydrogen. Three potential hydrogen demand scenarios over a long period of time were projected to estimate hydrogen FCVs market penetration, and the costs associated with the hydrogen production, storage and distribution were also calculated. A sensitivity analysis was implemented to investigate the uncertainties of some parameters on the design of the future hydrogen infrastructure. It was found that the cost of hydrogen is very sensitive to electricity price, but other factors such as water price, energy efficiency of electrolysis, and plant life have insignificant impact on the total cost of hydrogen produced.  相似文献   

4.
This paper has performed an assessment of lifecycle (as known as well-to-wheels, WTW) greenhouse gas (GHG) emissions and energy consumption of a fuel cell vehicle (FCV). The simulation tool MATLAB/Simulink is employed to examine the real-time behaviors of an FCV, which are used to determine the energy efficiency and the fuel economy of the FCV. Then, the GREET (Greenhouse gases, Regulated Emissions, and Energy use in Transportation) model is used to analyze the fuel-cycle energy consumption and GHG emissions for hydrogen fuels. Three potential pathways of hydrogen production for FCV application are examined, namely, steam reforming of natural gas, water electrolysis using grid electricity, and water electrolysis using photovoltaic (PV) electricity, respectively. Results show that the FCV has the maximum system efficiency of 60%, which occurs at about 25% of the maximum net system power. In addition, the FCVs fueled with PV electrolysis hydrogen could reduce about 99.2% energy consumption and 46.6% GHG emissions as compared to the conventional gasoline vehicles (GVs). However, the lifecycle energy consumption and GHG emissions of the FCVs fueled with grid-electrolysis hydrogen are 35% and 52.8% respectively higher than those of the conventional GVs. As compared to the grid-based battery electric vehicles (BEVs), the FCVs fueled with reforming hydrogen from natural gas are about 79.0% and 66.4% in the lifecycle energy consumption and GHG emissions, respectively.  相似文献   

5.
Innovative technologies are required to offset increasing consumption and declining stocks of non-renewable resources. This study examines a possible enhancement of waste management and transportation by integrating two emerging technologies: municipal solid waste (MSW) gasification and fuel cell vehicles (FCVs), by fueling FCVs with hydrogen produced from gasified MSW. Material and energy flows were modeled in four MSW management scenarios (incineration, landfill, gasification, gasification with recycling) and four transportation scenarios (hybrid gasoline-electric, methanol FCVs, hydrogen FCVs using hydrogen from natural gas or municipal solid waste). Technological performance deemed feasible within 2010–2020 was assumed. Greenhouse gas emissions and non-renewable energy use were used to assess overall system performance. Gasification with hydrogen production performs as efficiently as incineration, but is advantageous compared to landfilling. Taking into account additional environmental criteria, the model suggests that hydrogen from MSW gasification for FCVs may provide benefits over conventional MSW treatment and transportation systems.  相似文献   

6.
The introduction of hydrogen infrastructure and fuel cell vehicles (FCVs) to gradually replace gasoline internal combustion engine vehicles can provide environment and energy security benefits. The deployment of hydrogen fueling infrastructure to support the demonstration and commercialization of FCVs remains a critical barrier to transitioning to hydrogen as a transportation fuel. This study utilizes an engineering methodology referred to as the Spatially and Temporally Resolved Energy and Environment Tool (STREET) to demonstrate how systematic planning can optimize early investments in hydrogen infrastructure in a way that supports and encourages growth in the deployment of FCVs while ensuring that the associated environment and energy security benefits are fully realized. Specifically, a case study is performed for the City of Irvine, California – a target area for FCV deployment – to determine the optimized number and location of hydrogen fueling stations required to provide a bridge to FCV commercialization, the preferred rollout strategy for those stations, and the environmental impact associated with three near-term scenarios for hydrogen production and distribution associated with local and regional sources of hydrogen available to the City. Furthermore, because the State of California has adopted legislation imposing environmental standards for hydrogen production, results of the environmental impact assessment for hydrogen production and distribution scenarios are measured against the California standards. The results show that significantly fewer hydrogen fueling stations are required to provide comparable service to the existing gasoline infrastructure, and that key community statistics are needed to inform the preferred rollout strategy for the stations. Well-to-wheel (WTW) greenhouse gas (GHG) emissions, urban criteria pollutants, energy use, and water use associated with hydrogen and FCVs can be significantly reduced in comparison to the average parc of gasoline vehicles regardless of whether hydrogen is produced and distributed with an emphasis on conventional resources (e.g., natural gas), or on local, renewable resources. An emphasis on local renewable resources to produce hydrogen further reduces emissions, energy use, and water use associated with hydrogen and FCVs compared to an emphasis on conventional resources. All three hydrogen production and distribution scenarios considered in the study meet California's standards for well-to-wheel GHG emissions, and well-to-tank emissions of urban ROG and NOX. Two of the three scenarios also meet California's standard that 33% of hydrogen must be produced from renewable feedstocks. Overall, systematic planning optimizes both the economic and environmental impact associated with the deployment of hydrogen infrastructure and FCVs.  相似文献   

7.
‘Business as usual’ scenarios in long-term energy forecasts are crucial for scenario-based policy analyses. This article focuses on fuel economy of passenger cars and light trucks, a long-disputed issue with serious implications for worldwide energy use and CO2 emissions. The current status in Europe is explained and future developments are analysed with the aid of historical data of the last three decades from the United States and Europe. As a result of this analysis, fuel economy values are proposed for use as assumptions in baseline energy/transport scenarios in the 15 ‘old’ European Union Member States. Proposed values are given for new gasoline and diesel cars and for the years 2010, 2020 and 2030. The increasing discrepancy between vehicle fuel consumption measured under test conditions and that in the real world is also considered. One main conclusion is that the European Commission's voluntary agreement with the automobile industry should not be assumed to fully achieve its target under baseline conditions, nor should it be regarded as a major stimulus for autonomous vehicle efficiency improvements after 2010. A second conclusion is that three very recent studies enjoying authority across the EU tend to be overly optimistic as regards the technical progress for conventional and alternative vehicle propulsion technologies under ‘business as usual’ conditions.  相似文献   

8.
This paper presents an overview of the initiatives launched in energy supply and consumption and the challenges encountered in sustainable road transportation development in China. It analyzes the main energy challenges related to road transportation development arising in the context of economic development, rapid urbanization, and improvement in living standards. It also discusses technological- and policy initiatives needed to deal with these challenges, drawing comparisons with foreign experience: promoting the development and dissemination of alternative fuels and clean vehicles such as: LPG, CNG, EV, HEV, FCV, ethanol, methanol, DME, bio-diesel, and CTL, strengthening regulations relating to vehicle fuel economy and emission, improving traffic efficiency and facilitating public transport development, and strengthening management of the soaring motor vehicle population. If the current pattern continues, by the year 2030, the vehicle population in China will be 400 million and fuel demand will be 350 million tons. The potential energy saving capacity being 60%, the actual oil demand by 2030 from on-road vehicles might technically be kept at the current level by improving fuel economy, propagating use of HEV and diesel vehicles, improving supply of alternative fuels, and developing public transport. Several uncertainties are identified that could greatly influence the effect of the technical proposals: traffic efficiency, central government's resolve, and consumers' choice.  相似文献   

9.
The fuel cell plug in hybrid electric vehicle (FCPHEV) is a near-term realizable concept to commercialize hydrogen fuel cell vehicles (FCV). Relative to conventional FCVs, FCPHEVs seek to achieve fuel economy benefits through the displacement of hydrogen energy with grid-sourced electrical energy, and they may have less dependence on a sparse hydrogen fueling infrastructure. Through the simulation of almost 690,000 FCPHEV trips using geographic information system (GIS) data surveyed from a fleet of private vehicles in the Puget Sound area of Washington State, USA, this study derives the electrical and hydrogen energy consumption of various design and control variants of FCPHEVs. Results demonstrate that FCPHEVs can realize hydrogen fuel consumption reductions relative to conventional FCV technologies, and that the fuel consumption reductions increase with increased charge depleting range. In addition, this study quantifies the degree to which FCPHEVs are less dependent on hydrogen fueling infrastructure, as FCPHEVs can refuel with hydrogen at a lower rate than FCVs. Reductions in hydrogen refueling infrastructure dependence vary with control strategies and vehicle charge depleting range, but reductions in fleet-level refueling events of 93% can be realized for FCPHEVs with 40 miles (60 km) of charge depleting range. These fueling events occur on or near the network of highways at approximately 4% of the rate (refuelings per year) of that for conventional FCVs. These results demonstrate that FCPHEVs are a type of FCV that can enable an effective and concentrated hydrogen refueling network.  相似文献   

10.
Hydrogen fueled fuel cell vehicles (FCVs) will play a major role as a part of the change toward the hydrogen based energy system. When combined with the right source of energy, fuel cells have the highest potential efficiencies and lowest potential emissions of any vehicular power source. As a result, extensive work into the development of hydrogen fueled FCVs is taking place. The aim of this paper is to highlight some of the research and development work which has occurred in the past five years on fuel cell vehicle technology, with a focus on economic and environmental concerns. It is observed that the current efforts are divided up into several parts. The performance, durability, and cost of fuel cell technology continue to be improved, and some fuel cells are currently ready to be mounted on vehicles and tested. Environmental and economic assessments of the entire hydrogen supply chain, including fuel cell end-use, are being carried out by groups of researchers around the world. It is currently believed that fuel cells need at least five more years of testing and improvement before large scale commercialization can begin. Economic and environmental analyses show that FCVs will likely be both economically competitive and environmentally benign. Indeed, the transition of the transportation sector to the use of hydrogen FCVs will represent one of the biggest steps toward the hydrogen economy.  相似文献   

11.
The present work contributes an engineered life cycle assessment (LCA) of hydrogen fuel cell passenger vehicles based on a real‐world driving cycle for semi‐urban driving conditions. A new customized LCA tool is developed for the comparison of conventional gasoline and hydrogen fuel cell vehicles (FCVs), which utilizes a dynamic vehicle simulation approach to calculate realistic, fundamental science based fuel economy data from actual drive cycles, vehicle specifications, road grade, engine performance, fuel cell degradation effects, and regenerative braking. The total greenhouse gas (GHG) emission and life cycle cost of the vehicles are compared for the case of hydrogen production by electrolysis in British Columbia, Canada. A 72% reduction in total GHG emission is obtained for switching from gasoline vehicles to FCVs. While fuel cell performance degradation causes 7% and 3% increases in lifetime fuel consumption and GHG emission, respectively, regenerative braking improves the fuel economy by 23% and reduces the total GHG emission by 10%. The cost assessment results indicate that the current FCV technology is approximately $2,100 more costly than the equivalent gasoline vehicle based on the total lifetime cost including purchase and fuel cost. However, prospective enhancements in fuel cell durability could potentially reduce the FCV lifetime cost below that of gasoline vehicles. Overall, the present results indicate that fuel cell vehicles are becoming both technologically and economically viable compared with incumbent vehicles, and provide a realistic option for deep reductions in emissions from transportation. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
Han Hao  Hewu Wang  Minggao Ouyang 《Energy》2011,36(11):6520-6528
Passenger vehicles are the main consumers of gasoline in China. We established a bottom-up model which focuses on the simulation of energy consumptions and greenhouse gas (GHG) emissions growth by China’s passenger vehicle fleet. The fuel conservation and GHG emissions mitigation effects of five measures including constraining vehicle registration, reducing vehicle travel, strengthening fuel consumption rate (FCR) limits, vehicle downsizing and promoting electric vehicle (EV) penetration were evaluated. Based on the combination of these measures, the fuel conservation and GHG emissions mitigation scenarios for China’s passenger vehicle fleet were analyzed. Under reference scenario with no measures implemented, the fuel consumptions and life cycle GHG emissions will reach 520 million tons of oil equivalent (Mtoe) and 2.15 billion tons in 2050, about 8.1 times the level in 2010. However, substantial fuel conservation can be achieved by implementing the measures. By implementing all five measures together, the fuel consumption will reach 138 Mtoe in 2030 and decrease to 126 Mtoe in 2050, which is only 37.1% and 24.3% of the consumption under reference scenario. Similar potential lies in GHG mitigation. The results and scenarios provided references for the Chinese government’s policy-making.  相似文献   

13.
Hydrogen energy is increasingly incorporated into long-distance transportation systems. Whether the coupled hydrogen-based transportation system can achieve a sustainable business operation mode requires quantification of environmental and economic performance by a comprehensive cost-benefit analysis. This study proposes a cost-based life cycle assessment method to evaluate the environmental and economic benefits of hydrogen-based long-distance transportation systems. The innovative cost assessment method introduces internal and external economic costs to conduct a multi-scenario assessment. According to the key factors of mileage, government subsidies and hydrogen fuel prices, this research identifies the key cost component of the hydrogen-based transportation system in China by using a multilevel comparison with cell-driven and oil-fueled vehicles. The results show that hydrogen fuel cell electric vehicles are competitive in terms of both fuel costs and environmental costs. As hydrogen costs are expected to be gradually reduced by 43% in the future, hydrogen logistics vehicles and heavy trucks are expected to have better life-cycle economics than other energy vehicles by approximately 2030. Hydrogen buses will outperform other vehicles by approximately 2033, while hydrogen passenger cars will have a reduced life-cycle cost per kilometre within 0.1 CHY/km compared to other vehicles by approximately 2035. Ultimately, fuel consumption, average annual mileage, and hydrogen fuel cell electric vehicle policy are three factors that have greater impacts. Policy implications are put forward to implement optimal investment plan for hydrogen transportation systems.  相似文献   

14.
Fuel economy of hydrogen fuel cell vehicles   总被引:1,自引:0,他引:1  
On the basis of on-road energy consumption, fuel economy (FE) of hydrogen fuel cell light-duty vehicles is projected to be 2.5–2.7 times the fuel economy of the conventional gasoline internal combustion engine vehicles (ICEV) on the same platforms. Even with a less efficient but higher power density 0.6 V per cell than the base case 0.7 V per cell at the rated power point, the hydrogen fuel cell vehicles are projected to offer essentially the same fuel economy multiplier. The key to obtaining high fuel economy as measured on standardized urban and highway drive schedules lies in maintaining high efficiency of the fuel cell (FC) system at low loads. To achieve this, besides a high performance fuel cell stack, low parasitic losses in the air management system (i.e., turndown and part load efficiencies of the compressor–expander module) are critical.  相似文献   

15.
For this study, we examined the energy and emission effects of hydrogen production from coke oven gas (COG) on a well-to-wheels basis and compared these effects with those of other hydrogen production options, as well as with those of conventional gasoline and diesel options. We then estimated the magnitude of hydrogen production from COG in the United States and the number of hydrogen fuel cell vehicles (FCVs) that could potentially be fueled with the hydrogen produced from COG. Our analysis shows that this production pathway can achieve energy and greenhouse gas emission reduction benefits. This pathway is especially worth considering because first, the sources of COG are concentrated in the upper Midwest and in the Northeast United States, which would facilitate relatively cost-effective collection, transportation, and distribution of the produced hydrogen to refueling stations in these regions. Second, the amount of hydrogen that could be produced may fuel about 1.7 million cars, thus providing a vital near-term hydrogen production option for FCV applications.  相似文献   

16.
Rapid growth of road vehicles, private vehicles in particular, has resulted in continuing growth in China's oil demand and imports, which has been widely accepted as a major factor effecting future oil availability and prices, and a major contributor to China's GHG emission increase. This paper is intended to analyze the future trends of energy demand and GHG emissions in China's road transport sector and to assess the effectiveness of possible reduction measures. A detailed model has been developed to derive a reliable historical trend of energy demand and GHG emissions in China's road transport sector between 2000 and 2005 and to project future trends. Two scenarios have been designed to describe the future strategies relating to the development of China's road transport sector. The ‘Business as Usual’ scenario is used as a baseline reference scenario, in which the government is assumed to do nothing to influence the long-term trends of road transport energy demand. The ‘Best Case’ scenario is considered to be the most optimized case where a series of available reduction measures such as private vehicle control, fuel economy regulation, promoting diesel and gas vehicles, fuel tax and biofuel promotion, are assumed to be implemented. Energy demand and GHG emissions in China's road transport sector up to 2030 are estimated in these two scenarios. The total reduction potentials in the ‘Best Case’ scenario and the relative reduction potentials of each measure have been estimated.  相似文献   

17.
《Energy Policy》2005,33(12):1499-1507
With the rapid economic growth in China, the Chinese road transport system is becoming one of the largest and most rapidly growing oil consumers in China. This paper attempts to present the current status and forecast the future trends of oil demand and CO2 emissions from the Chinese road transport sector and to explore possible policy measures to contain the explosive growth of Chinese transport oil consumption. A bottom-up model was developed to estimate the historical oil consumption and CO2 emissions from China's road transport sector between 1997 and 2002 and to forecast future trends in oil consumption and CO2 emissions up to 2030. To explore the importance of policy options of containing the dramatic growth in Chinese transport oil demand, three scenarios regarding motor vehicle fuel economy improvements were designed in predicting future oil use and CO2 emissions. We conclude that China's road transportation will gradually become the largest oil consumer in China in the next two decades but that improvements in vehicle fuel economy have potentially large oil-saving benefits. In particular, if no control measures are implemented, the annual oil demand by China's road vehicles will reach 363 million tons by 2030. On the other hand, under the low- and high-fuel economy improvement scenarios, 55 and 85 million tons of oil will be saved in 2030, respectively. The scenario analysis suggests that China needs to implement vehicle fuel economy improvement measures immediately in order to contain the dramatic growth in transport oil consumption. The imminent implementation is required because (1) China is now in a period of very rapid growth in motor vehicle sales; (2) Chinese vehicles currently in the market are relatively inefficient; and (3) the turnover of a fleet of inefficient motor vehicles will take a long time.  相似文献   

18.
Considering the enormous ecological and economic importance of the transport sector the introduction of alternative fuels—together with drastic energy efficiency gains—will be a key to sustainable mobility, nationally as well as globally. However, the future role of alternative fuels cannot be examined from the isolated perspective of the transport sector. Interactions with the energy system as a whole have to be taken into account. This holds both for the issue of availability of energy sources as well as for allocation effects, resulting from the shift of renewable energy from the stationary sector to mobile applications. With emphasis on hydrogen as a transport fuel for private passenger cars, this paper discusses the energy systems impacts of various scenarios introducing hydrogen fueled vehicles in Germany. It identifies clear restrictions to an enhanced growth of clean hydrogen production from renewable energy sources (RES). Furthermore, it points at systems interdependencies that call for a priority use of RES electricity in stationary applications. Whereas hydrogen can play an increasing role in transport after 2030 the most important challenge is to exploit short–mid-term potentials of boosting car efficiency.  相似文献   

19.
Historically, Brazil has promoted the development and sales of light duty vehicles running on ethanol (firstly, ethanol-dedicated cars, and recently flexfuel cars). In the 1990s, the country also favored the sales of compact cars to middle and low-income classes. However, in the last years, the profile of vehicles sold in Brazil has converged towards larger and less-efficient vehicles. In 2008, Brazil launched the vehicle labeling program. Based on the outcomes of the historical programs oriented towards the development of automotive innovations, and on a survey conducted with the country’s main auto makers, this article evaluates whether the vehicle labeling program will both improve the energy efficiency of light vehicles, and introduce new technologies. Our results indicate that, despite its virtuous intentions, the program will not control the tendency of rising fuel consumption of passenger cars sold in Brazil. Therefore, other policies are needed to boost innovations in Brazil’s automotive industry.  相似文献   

20.
Recently, China has implemented many policy measures to control the oil demand of on-road vehicles. In 2010, China started to report the fuel consumption rates of light-duty vehicles tested in laboratory and to require new vehicles to show the rates on window labels. In this study, we examined the differences between the test and real-world fuel consumption of Chinese passenger cars by using the data reported by real-world drivers on the internet voluntarily. The sales-weighted average fuel consumption of new cars in China in 2009 was 7.80 L/100 km in laboratory and 9.02 L/100 km in real-world, representing a difference of 15.5%. For the 153 individual car models examined, the real-world fuel consumption rates were −8 to 60% different from the test values. The simulation results of the International Vehicle Emission model show that the real-world driving cycles in 22 selected Chinese cities could result in −8 to 34% of changes in fuel consumption compared to the laboratory driving cycle. Further government effort on fuel consumption estimates adjustment, local driving cycle development, and real-world data accumulation through communication with the public is needed to improve the accuracy of the labeling policy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号