首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A two dimensional model is developed to study the transport and reaction processes in solid oxide fuel cells (SOFCs) fueled by partially pre-reformed gas mixture, considering the direct internal reforming (DIR) of methane and water gas shift (WGS) reaction in the porous anode of SOFC. Electrochemical oxidations of H2 and CO fuels are both considered. The model consists of an electrochemical, a chemical model, and a computational fluid dynamics (CFD) model. Two chemical models are compared to examine their effects on SOFC modeling results. Different from the previous studies on hydrogen fueled SOFC, higher gas velocity is found to slightly decrease the performance of SOFC running on pre-reformed gas mixture, due to suppressed gas composition variation at a higher gas velocity. The current density distribution along the gas channels at an inlet temperature of 1173K is quite different from that at 1073K, as DIR reaction is facilitated at a higher temperature. It is also found that neglecting the electrochemical oxidation of CO can considerably underestimate the total current density of SOFC running on pre-reformed hydrocarbon fuels. An alternative method is proposed to numerically determine the open-circuit potential of SOFC running on hydrocarbon fuels. Electrochemical reactions are observed at open-circuit potentials.  相似文献   

2.
A 2D computational fluid dynamics (CFD) model is developed to study the performance of an advanced planar solid oxide fuel cell based on proton conducting electrolyte (SOFC‐H). The governing equations are solved with the finite volume method (FVM). Simulations are conducted to understand the transport phenomena and electrochemical reaction involved in SOFC‐H operation as well as the effects of operating/structural parameters on SOFC‐H performance. In an SOFC based on oxygen ion conducting electrolyte (SOFC‐O), mass is transferred from the cathode side to the anode side. While in an SOFC‐H, mass is transferred from the anode to the cathode, which causes different velocity fields of the fuel and oxidant gas channels and influences the distributions of temperature and gas composition in the cell. It is also found that increasing the inlet gas velocity leads to an increase in the local current density and a slight decrease in the SOFC‐H temperature due to stronger cooling effect of the gas species at a higher velocity. Another finding is that the electrode structure does not significantly affect the heat and mass transfer in an SOFC‐H at typical operating voltages. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
4.
SOFCs are often designed to operate with specific fuels, quite often natural gas. CFD modeling is often used to arrive at efficient and safe SOFC designs. Therefore, when an SOFC is fed with different fuels, i.e., biosyngas, CFD can be used as a tool to predict whether the cell and stack will be safe and operate efficiently, and thus can give suggestions for the operation strategies for SOFCs. For that reason, a combined mass and heat transport model of an SOFC (single channel) has been developed for an anode-supported SOFC fed with biosyngas with special attention to the reaction kinetics of the direct internal reforming (DIR) reaction together with the water–gas shift reaction. An SOFC design jointly developed by ECN and Delft University of Technology is employed for the calculations. This work aims to predict the influence of different reforming reaction kinetic parameters on the cell performance by using an anode-supported intermediate temperature DIR planar solid oxide fuel single channel model, under co-flow operation. The DIR reaction of methane, the water–gas shift reaction and the electrochemical oxidation of hydrogen are being considered. As different reaction kinetic models are available in literature and employing them in CFD calculations will yield different results, a comparative analysis is carried out. Several cases were studied with a variety of DIR and water gas shift reaction kinetic parameters available from literature. For the different cases considered, the modeling results show differences in the current density distribution and temperature profile in the channel and in gas concentration profile along the channel. These differences are presented and discussed in detail. Predictions of the behaviors of internal reforming reaction in the reaction zone, and the possibilities of unwanted side reactions such as carbon deposition and Ni oxidation are given with constructive suggestions for future lab experiments.  相似文献   

5.
A thermal and electrochemical model is developed for the simulation of Solid Oxide Fuel Cell (SOFC) cogeneration system in this study. The modeling algorithms of electrochemical and thermal models are described. Since the fuel cell stack itself is only a single component within the whole SOFC system, the modeling of the balance-of-plant (BOP) components is also performed to assess the system-level performance. Using the new model, a parametric analysis is carried out to investigate the effects of fuel flow rate, extent of methane gas pre-reforming, fuel utilization factor, recycling rate of cathode gas and cell voltage on the overall system performance. As a result of the parametric study, fuel flow rate, cell voltage, fuel utilization and recycling rate of cathode gas turned out to improve system power output. In addition, the internal reforming turned out to have advantage over external reforming in terms of system power supply.  相似文献   

6.
This study presents a 3D CFD model of a planar SOFC with internal reforming for anode flow field design. The developed model reflects the influence of various factors on fuel cell performance including flow field design and kinetics of chemical and electrochemical reactions. The case study illustrates applications of the CFD model for planar SOFC with different anode flow field designs. Simulation results indicate the importance of the anode flow field design for planar SOFCs. The model is useful for optimization of fuel cell design and operating conditions.  相似文献   

7.
Computational fluid dynamics (CFD) and finite element analysis (FEA) are important modelling and simulation techniques to design and develop fuel cell stacks and their balance of plant (BoP) systems.The aim of this work is to design a microtubular solid oxide fuel cell (SOFC) stack by coupling CFD and FEA models to capture the multiphysics nature of the system. The focus is to study the distribution of fluids inside the fuel cell stack, the dissipation of heat from the fuel cell bundle, and any deformation of the fuel cells and the stack canister due to thermal stresses, which is important to address during the design process. The stack is part of an innovative all-in-one SOFC generator with an integrated BoP system to power a fixed wing mini unmanned aerial vehicle. Including the computational optimisation at an early stage of the development process is hence a prerequisite in developing a reliable and robust all-in-one SOFC generator system. The presented computational model considers the bundle of fuel cells as the heat source. This could be improved in the future by replacing the heat source with electrochemical reactions to accurately predict the influence of heat on the stack design.  相似文献   

8.
A three-dimensional (3D) computational fluid dynamics (CFDs) electrochemical model has been created to model high-temperature electrolysis stack performance and steam electrolysis in the Idaho National Laboratory (INL) Integrated Lab Scale (ILS) experiment. The model is made of 60 planar cells stacked on top of each other operated as solid oxide electrolysis cells (SOECs). Details of the model geometry are specific to a stack that was fabricated by Ceramatec, Inc. [References herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government, any agency thereof, or any company affiliated with the Idaho National Laboratory]. and tested at INL. Inlet and outlet plenum flow and distribution are considered. Mass, momentum, energy, and species conservation and transport are provided via the core features of the commercial CFD code FLUENT. [References herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government, any agency thereof, or any company affiliated with the Idaho National Laboratory]. A solid oxide fuel cell (SOFC) model adds the electrochemical reactions and loss mechanisms and computation of the electric field throughout the cell. The FLUENT SOFC user-defined subroutine was modified for this work to allow for operation in the SOEC mode. Model results provide detailed profiles of temperature, Nernst potential, operating potential, activation over potential, anode-side gas composition, cathode-side gas composition, current density, and hydrogen production over a range of stack operating conditions. Variations in flow distribution and species concentration are discussed. End effects of flow and per-cell voltage are also considered.  相似文献   

9.
In this study a steady-state three-dimensional computational fluid dynamics (CFD) model of a proton exchange membrane fuel cell is developed and presented for a single cell. A complete set of conservation equations of mass, momentum, species, energy transport, and charge is considered with proper account of electrochemical kinetics based on Butler–Volmer equation. The catalyst layer structure is considered to be agglomerate. This model enables us to investigate the flow field, current distribution, and cell voltage over the fuel cell which includes the anode and cathode collector plates, gas channels, catalyst layers, gas diffusion layers, and the membrane. The numerical solution is based on a finite-volume method in a single solution domain. In this investigation a CFD code was used as the core solver for the transport equations, while mathematical models for the main physical and electrochemical phenomena were devised into the solver using user-developed subroutines. Three-dimensional results of the flow structure, species concentrations and current distribution are presented for bipolar plates with square cross section of straight flow channels. A polarization curve is obtained for the fuel cell under consideration. A comparison between the polarization curves obtained from the current study and the corresponding available experimental data is presented and a reasonable agreement is obtained. Such CFD model can be used as a tool in the development and optimization of PEM fuel cells.  相似文献   

10.
Biomass reformation is an interesting path for hydrogen production and its use for efficient energy generation. The main target is the fully exploitation of the potential of renewable fuels. To this aim, the coupling a biomass reformer together with a high temperature solid oxide fuel cell (SOFC) stack shows some advantages for the similar operating temperature of the two processes and the internal reforming capability of the SOFC. The latter further allows less stringent composition requirements of the feed gas from a gasifier and internal cooling of the SOFC.In this work, a complete model of a SOFC coupled with a biomass gasifier is used to identify the main effects of the operating conditions on the fuel cell performance.The gasification process has been simulated by an equilibrium model able to compute the reformate composition under different operating conditions, whereas a 3D fluid dynamics simulation (FLUENT) coupled with an external model for the electrochemical reactions has been used to predict the fuel cell performance in terms of electrical response and mass-energy fluxes.A 14 kW integrated SOFC-gasifier system has been analysed with this model to address the response of a planar SOFC as a function of the gasifier operating conditions.  相似文献   

11.
Experimental activities and computational fluid dynamics (CFD) simulation are presented in this paper for investigating the performance of an anode-supported solid oxide fuel cell (SOFC). The goal of this work is to assess a commercial CFD code, Star-CD with es-sofc module, to simulate the current–voltage (IV) characteristics with respect to the experimental data. Compiled with the geometry of cell test housing, a 3D numerical model and test conditions were established to analyze the anode-supported cell (ASC) performance including current density and temperature distributions, fuel concentration, and fuel utilization. After adjusting parameters in the electrochemical model, the simulation results showed good agreements with the experimental data. The results also revealed that the power density increased while the fuel utilization decreased as the fuel flow rate increased.  相似文献   

12.
In this research a 3D numerical study on a PEM fuel cell model with tubular plates is presented. The study is focused on the performance evaluation of three flow fields with cylindrical geometry (serpentine, interdigitated and straight channels) in a fuel cell. These designs are proposed not only with the aim to reduce the pressure losses that conventional designs exhibit with rectangular flow fields but also to improve the mass transport processes that take place in the fuel cell cathode. A commercial computational fluid dynamics (CFD) code was used to solve the numerical model. From the numerical solution of the fluid mechanics equations and the electrochemical model of Butler-Volmer different analysis of pressure losses, species concentration, current density, temperature and ionic conductivity were carried out. The results were obtained at the flow channels and the catalyst layers as well as in the gas diffusion layers and the membrane interfaces. Numerical results showed that cylindrical channel configurations reduced the pressure losses in the cell due to the gradual reduction of the angle at the flow path and the twist of the channel, thus facilitating the expulsion of liquid water from the gas diffusion layers and in turn promoting a high oxygen concentration at the triple phase boundary of the catalyst layers. Moreover, numerical results were compared to polarization curves and the literature data reported for similar designs. These results demonstrated that conventional flow field designs applied to conventional tubular plates have some advantages over the rectangular designs, such as uniform pressure and current density distributions among others, therefore they could be considered for fuel cell designs in portable applications.  相似文献   

13.
Numerical simulations can be used to visualize and better understand various distributions such as gas concentration and temperature in solid oxide fuel cells (SOFCs) under realistic operating conditions. However, pre-existing models generally utilize an anode exchange current density equation which is valid for humidified hydrogen fuels – an unrealistic case for SOFCs, which are generally fueled by hydrocarbons. Here, we focus on developing a new, modified exchange current density equation, leading to an improved numerical analysis model for SOFC anode kinetics. As such, we experimentally determine the exchange current density of SOFC anodes fueled by fully pre-reformed methane. The results are used to derive a new phenomenological anode exchange current density equation. This modified equation is then combined with computational fluid dynamics (CFD) to simulate the performance parameters of a three-dimensional electrolyte-supported SOFC. The new modified exchange current density equation for methane-based fuels reproduces the I–V characteristics and temperature distribution significantly better than the previous models using humidified hydrogen fuel. Better simulations of SOFC performance under realistic operating conditions are crucial for the prediction and prevention of e.g. fuel starvation and thermal stresses.  相似文献   

14.
Solid oxide fuel cell (SOFC) is a complicated system with heat and mass transfer as well as electrochemical reactions. The flowing configuration of fuel and oxidants in the fuel cell will greatly affect the performance of the fuel cell stack. Based on the developed mathematical model of direct internal reforming SOFC, this paper established a distributed parameters simulation model for cocurrent and countercurrent types of SOFC based on the volume-resistance characteristic modeling method. The steady-state distribution characteristics and dynamic performances were compared and were analyzed for cocurrent and countercurrent types of SOFCs. The results indicate that the cocurrent configuration of SOFC is more suitable with regard to performance and safety.  相似文献   

15.
In this study, a three dimensional model is constructed to investigate the flow distributions and the pressure variations for a 40-cell solid oxide fuel cell (SOFC) stack. Computational fluid dynamics (CFD) is used to optimize the design parameters of external manifold in the stack. The model consists of equations for the network with chamber structure of manifold. Simulation results indicate that the flow uniformity strongly depends on geometric shapes of manifold, including the joined position between tube and manifold, the dimension of manifold and the number of tubes. The ratio of flow velocity which describes the uniformity of flow distribution can be decreased by optimizing the geometrical structure of manifolds. In addition, it is found that the flow distribution can be intensively influenced by the gas resistance of the stack, which is closely related to the configuration of interconnect channels. The results summarize the importance of structure design of external manifold for stack performance. The numerical results are in good agreement with the experimental measurement in a 40-cell stack.  相似文献   

16.
A numerical model has been developed to simulate the effect of combustion zone geometry on the steady state and transient performance of a tubular solid oxide fuel cell (SOFC). The model consists of an electrochemical submodel and a thermal submodel. In the electrochemical model, a network circuit of a tubular SOFC was adopted to model the dynamics of Nernst potential, ohmic polarization, activation polarization, and concentration polarization. The thermal submodel simulated heat transfers by conduction, convention, and radiation between the cell and the air feed tube. The developed model was applied to simulate the performance of a tubular solid oxide fuel cell at various operating parameters, including distributions of circuits, temperature, and gas concentrations inside the fuel cell. The simulations predicted that increasing the length of the combustion zone would lead to an increase of the overall cell tube temperature and a shorter response time for transient performance. Enlarging the combustion zone, however, makes only a negligible contribution to electricity output properties, such as output voltage and power. These numerical results show that the developed model can reasonably simulate the performance properties of a tubular SOFC and is applicable to cell stack design.  相似文献   

17.
A three-dimensional mathematical thermo-fluid model coupling the electrochemical kinetics with fluid dynamics was developed to simulate the heat and mass transfer in planar anode-supported solid oxide fuel cell (SOFC). The internal reforming reactions and electrochemical reactions of carbon monoxide and hydrogen in the porous anode layer were analyzed. The temperature, species mole fraction, current density, overpotential loss and other performance parameters of the single cell unit were obtained by a commercial CFD code (Fluent) and external sub-routine. Results show that the current density produced by electrochemical reactions of carbon monoxide cannot be ignored, the cathode overpotential loss is the biggest one among the three overpotential losses, and that the proper decrease of the operating voltage leads to the increase of the current density, PEN structure temperature, fuel utilization factor, fuel efficiency and power output of the SOFC.  相似文献   

18.
《Journal of power sources》2006,157(1):226-243
Water management in a proton exchange membrane (PEM) fuel cell stack has been a challenging issue on the road to commercialization. This paper presents a numerical investigation of air–water flow in micro-parallel-channels with PEM fuel cell stack inlet and outlet manifolds for the cathode, using a commercial Computational Fluid Dynamics (CFD) software package FLUENT. Different air–water flow behaviours inside the straight micro-parallel-channels with inlet and outlet manifolds were simulated and discussed. The results showed that excessive and unevenly distributed water in different single PEM fuel cells could cause blockage of airflow or uneven distribution of air along the different flow channels. It is found that for a design with straight-channels, water in the outflow manifold could be easily blocked by air/water streams from the gas flow channels; the airflow could be severely blocked even if there was only a small amount of water in the gas flow channels. Some important suggestions were made to achieve a better design.  相似文献   

19.
《Journal of power sources》2006,158(2):1290-1305
The evaluation of solid oxide fuel cell (SOFC) combined heat and power (CHP) system configurations for application in residential dwellings is explored through modeling and simulation of cell-stacks including the balance-of-plant equipment. Five different SOFC system designs are evaluated in terms of their energetic performance and suitability for meeting residential thermal-to-electric ratios. Effective system concepts and key performance parameters are identified. The SOFC stack performance is based on anode-supported planar geometry. A cell model is scaled-up to predict voltage–current performance characteristics when served with either hydrogen or methane fuel gas sources. System comparisons for both fuel types are made in terms of first and second law efficiencies. The results indicate that maximum efficiency is achieved when cathode and anode gas recirculation is used along with internal reforming of methane. System electric efficiencies of 40% HHV (45% LHV) and combined heat and power efficiencies of 79% (88% LHV) are described. The amount of heat loss from small-scale SOFC systems is included in the analyses and can have an adverse impact on CHP efficiency. Performance comparisons of hydrogen-fueled versus methane-fueled SOFC systems are also given. The comparisons indicate that hydrogen-based SOFC systems do not offer efficiency performance advantages over methane-fueled SOFC systems. Sensitivity of this result to fuel cell operating parameter selection demonstrates that the magnitude of the efficiency advantage of methane-fueled SOFC systems over hydrogen-fueled ones can be as high as 6%.  相似文献   

20.
新型平板式固体氧化物燃料电池的开发和性能分析   总被引:3,自引:0,他引:3  
利用商业数值分析软件和试验获得的电池各部件材料性能数据,改进了用于分析固体氧化物燃料电池(SOFC)单电池内部复杂物理过程的软件包.应用该软件包,得到了设计的新型高效平板式SOFC单电池内部各气体组分浓度、温度、电势、电流及电流密度等参数的分布规律.分析结果表明:在高燃料利用率情况下,阳极内组分扩散引起的浓度极化损失是影响电池性能的重要因素之一.该新型结构电池可有效改善电池的密封性,但其电解质需要较高的最大离子传导率.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号