首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper is a comprehensive review of H2 consumption during anaerobic mixed culture H2 dark fermentation with a focus on homoacetogenesis. Homoacetogenesis consumed from 11% to 43% of the H2 yield in single and repeated batch fermentations, respectively. However, its quantification and extent during continuous fermentation are still not well understood. Models incorporating thermodynamic and kinetic controls are required to provide insight into the dynamic of homoacetogenesis during H2 dark fermentation. Currently, no adequate method exists to eliminate homoacetogenesis because it does not depend on the culture's source, pre-treatment, substrate, type of reactor, or operation conditions. Controlling CO2 concentrations during dark fermentation needs further investigation as a potential strategy towards controlling homoacetogenesis. Incorporating radioactive labeling technique in H2 fermentation research could provide information on simultaneous production and consumption of H2 during dark fermentation. Genetic studies investigating blocking H2 consuming pathways and enhancing H2 evolving hydrogenases are suggested towards controlling homoacetogenesis during dark fermentation.  相似文献   

2.
Enriched activated sludge that can effectively convert crude glycerol into bio-hydrogen was selected by an eco-biotechnological approach, in very strict conditions, using biodiesel-derived glycerol as the only carbon source. The thus obtained functional consortium was characterized by the genera Klebsiella, Escherichia/Shigella and Cupriavidus. During enrichment, the dominant metabolic end-product shifted from a 1,3 propanediol to ethanol, with a concomitant increase of the hydrogen yield from 0.18 ± 0.003 to 0.66 ± 0.06 mol/mol and an almost five-fold increase of the hydrogen production. Glycerol degradation efficiency showed an increase of around 50%. In optimized and upscaled conditions it was possible to obtain a hydrogen production rate of 2960 mL H2/L/day ± 185 at a near stoichiometric yield (of 0.90 mol/mol ± 0.01), with a carbon recovery of almost 90%, both in sterile and non-sterile conditions. Glycerol was almost totally degraded (degradation efficiency of 97.42% ± 0.98), independently of the glycerol type used.  相似文献   

3.
Batch tests were conducted to evaluate the enhancement of hydrogen/ethanol (EtOH) productivity using cow dung microflora to ferment α-cellulose and saccharification products (glucose and xylose). Hydrogen/ethanol production was evaluated based on hydrogen/ethanol yields (HY/EY) under 55 °C at various initial pH conditions (5.5–9.0). Our test results indicate that cow dung sludge is a good mixed natural-microflora seed source for producing biohydrogen/ethanol from cellulose and xylose. The heat-pretreatment, commonly used to produce hydrogen more efficiently from hexose, applied to mixed anaerobic cultures did not help cow dung culture convert cellulose and xylose into hydrogen/ethanol. Instead of heat-pretreatment, the mixed culture received enrichments cultivated at 55 °C for 4 days. Positive results were observed: hydrogen/ethanol production from fermenting cellulose and xylose was effectively enhanced at increases of 4.8 (ethanol) to 8 (hydrogen) and 2.4 (ethanol) to 15.6 (hydrogen) folds, respectively. In which, the ethanol concentration produced from xylose reached 4–4.4 g/L, an output comparable to that of using heat-treated sewage sludge and better than that (1.25–3 g/L) using pure cultures. Our test results show that for the enriched cultures the initial cultivation pH can affect hydrogen/ethanol production including HY, EY and liquid fermentation product concentration and distribution. These results were also concurred using a denaturing gradient gel electrophoresis analysis saying that both cultivation pH and substrate can affect the enriched cow dung culture microbial communities. The enriched cow dung culture had an optimal initial cultivation pH range of 7.6–8.0 with peak HY/EY values of 2.8 mmol-H2/g-cellulose, 5.8 mmol-EtOH/g-cellulose, 0.3 mol-H2/mol-xylose and 1 mol-EtOH/mol-xylose. However, a pH change of 0.5 units from the optimal values reduced hydrogen/ethanol production efficiency by 20%. Strategies based on the experimental results for optimal hydrogen/ethanol production from cellulose and xylose using cow dung microflora are proposed.  相似文献   

4.
This study explored the fermentative hydrogen production by immobilized microorganisms from glycerol, which is the byproduct of biodiesel production, and compared it with suspended fermentation. The effect of immobilization on hydrogen production process was examined. Results showed that both cumulative hydrogen production (CHP) and hydrogen yield (HY) were enhanced by microbial immobilization. The highest CHP and HY of 64 mL/100 mL and 0.52 mol H2/mol glycerol were obtained by immobilized microorganisms, compared to 9 mL/100 mL and 0.29 mol H2/mol glycerol in suspended microorganisms. Immobilization enhanced CHP and HY by 611.1% and 79.3%. In addition, immobilized microorganisms showed stronger tolerance to high substrate concentration and higher capability in glycerol utilization, which is of great significance for hydrogen production from glycerol. The enhanced hydrogen production may be due to the favorable micro-environment for different microorganisms in immobilized beads.  相似文献   

5.
Continuous H2 production from xylose by granules and biofilm up-flow anaerobic reactor using moderate thermophilic mixed cultures was investigated. The maximum H2 yield of 251 mL H2/g-xylose with H2production rate of 15.1 L H2/L⋅d was obtained from granules reactor operating at the organic loading rate (OLR) of 60 g-xylose/L⋅d and hydraulic retention time (HRT) of 4 h. Meanwhile the highest H2 production rate of 13.3 L H2/L⋅d with an H2 yield of 221 mL H2/g–xylose was achieved from the biofilm reactor. Both reactors were dominated by Thermoanaerobacterium species with acetate and butyrate as main fermentation products. The microbial community of the biofilm reactor was composed of Thermoanaerobacterium species, while granules reactor was composed of Clostridium sp., Thermoanaerobacterium sp. and Caloramator sp. The granular reactor was more microbial diversity and more balance between economic efficiency in term of the hydrogen production rate and technical efficiency in term of hydrogen yield.  相似文献   

6.
Glycerol is a highly available by-product generated in the biodiesel industry. It can be converted into higher value products such as hydrogen using biological processes. The aim of this study was to optimize a continuous dark fermenter producing hydrogen from glycerol, by using micro-aerobic conditions to promote facultative anaerobes. For that, hydrogen peroxide (H2O2) was continuously added at low but constant flow rate (0.252 mL/min) with three different inlet concentrations (0.2, 0.4, and 0.6% w/w). A mixture of aerobic and anaerobic sludge was used as inoculum. Results showed that micro-oxidative environment significantly enhanced the overall hydrogen production. The maximum H2 yield (403.6 ± 94.7 mmolH2/molGlyconsumed) was reached at a H2O2 concentration of 0.6% (w/w), through the formate, ethanol and butyrate metabolic pathways. The addition of H2O2 promoted the development of facultative anaerobic microorganisms such as Klebsiella, Escherichia-Shigella and Enterococcus sp., likely by consuming oxygen traces in the medium and also producing hydrogen. Despite the micro-oxidative environment, strict anaerobes (Clostridium sp.) were still dominant in the microbial community and were probably the main hydrogen producing species. In conclusion, such micro-oxidative environment can improve hydrogen production by selecting specific microbial community structures with efficient metabolic pathways.  相似文献   

7.
The effect of temperature on the hydrogen fermentation of cellulose was evaluated by a continuous experiment using a mixed culture without pretreatment. The experiments were conducted at three different temperatures, which were mesophilic [37 ± 2 °C], thermophilic [55 ± 2 °C] and hyper-thermophilic [80 ± 2 °C], with an influent concentration of cellulose of 5 g/l and a hydraulic retention time [HRT] of 10 days. A stable hydrogen production was observed at each condition. At 37 ± 2 °C, the maximum hydrogen yield was 0.6 mmol H2/g cellulose. However, at 55 ± 2 °C and 80 ± 2 °C, the maximum hydrogen yields were 15.2 and 19.02 mmol H2/g cellulose, respectively. While 26% of the biogas was methane under the mesophilic temperature, no methane gas was detected under both the thermophilic and hyper-thermophilic temperatures. The results show that operational temperature is a key to sustainable bio-hydrogen production and that the thermophilic and hyper-thermophilic conditions produced better results than mesophilic condition.  相似文献   

8.
Biohydrogen is a promising candidate which can replace a part of our fossil fuels need in day-to-day life due its perceived environmental benefits and availability through dark fermentation of organic substrates. Moreover, advances in biohydrogen production technologies based on organic wastewater conversion could solve the issues related to food security, climate change, energy security and clean development in the future. An evaluation of studies reported on biohydrogen production from different wastewaters will be of immense importance in economizing production technologies. Here we have reviewed biohydrogen production yields and rates from different wastewaters using sludges and microbial consortiums and evaluated the feasibility of biohydrogen production from unexplored wastewaters and development of integrated bioenergy process. Biohydrogen production has been observed in the range of substrate concentration 0.25–160 g COD/L, pH 4–8, temperature 23–60 °C, HRT 0.5–72 h with various types of reactor configuration. The most efficient hydrogen production has been obtained at an organic loading rate (OLR) 320 g COD/L/d, substrate concentration 40 g COD/L, HRT 3 h, pH 5.5–6.0, temperature 35 °C in a continuously-stirred tank reactor system using mixed cultures and fed with condensed molasses fermentation soluble wastewater. The net energy efficiency analysis showed vinasse wastewater has the highest positive net energy gain followed by glycerin wastewater and domestic sewage as 140.39, 68.65, 51.84 kJ/g COD feedstock with the hydrogen yield (HY) of 10 mmol/g COD respectively.  相似文献   

9.
Dark fermentation hydrogen production from arabinose at concentrations ranging between 0 and 100 g/L was examined in batch assays for three different mixed anaerobic cultures, two suspended sludges (S1, S2) obtained from two different sludge digesters and one granular sludge (G) obtained from a brewery wastewater treatment plant. After elimination of the methanogenic activity by heat treatment, all mixed cultures produced hydrogen, and optimal hydrogen rates and yields were generally observed for concentrations between 10 and 40 g/L of substrate. Higher concentrations of arabinose up to 100 g/L inhibited hydrogen production, although the effect was different from inoculum to inoculum. It was evident that the granular biomass was less affected by increased initial arabinose concentrations when calculating the rate of decrease in hydrogen yields versus arabinose concentrations, compared against the two suspended sludges.  相似文献   

10.
When mixed organic waste is used for hydrogen production by dark fermentation, the microbial community which is most adapted to the actual biopolymer composition of the substrate is auto-selected. In this research, six substrates simulating different biopolymers (proteins, fats, carbohydrates) and their mixtures were used to enrich hydrogen-producing bacteria adapted to these substrates from non-pretreated sewage sludge. Phylum Firmicutes dominated in the microbial community (67–100%) regardless of the substrate used, as was shown by high-throughput sequencing. Microbial diversity was low when using carbohydrate-rich substrates and the microbial community was mainly represented by Ruminococcus (26–90%) and Thermoanaerobacterium (6–67%). Dark fermentation of fats and proteins was characterized by higher microbial diversity. Thermoanaerobacterium (21%), Thermobrachium (19%), Tepidiphilus (16%) and Acetomicrobium (14%) dominated when using fats, while Thermobrachium (34%), Acetomicrobium (16%) and Clostridium sensu stricto 7 (12%) dominated when using proteins, as substrate. Different microbial communities and substrates resulted in diverse process performance and metabolic pathways. Dark fermentation of starch achieved the maximum hydrogen yield of 138 mL/g volatile solids with 60.4% hydrogen content in biogas. The dominance of genus Ruminococcus was thought to be responsible for the highest hydrogen production. Minor quantities of methane from proteins and fats were produced by Methanothermobacter and Methanosarcina. Based upon the stable 13C isotope analysis, the hydrogenotrophic pathway was a slightly more predominant methane formation route than the others considered.  相似文献   

11.
This work aimed to investigate the effects of supplementing two distinct types of ash, namely fly ash (FA) and bottom ash (BA) on the dark fermentation (DF) process of food waste (FW) for H2 production. Both types of biomass combustion ash (BCA) were collected in an industrial bubbling fluidized bed combustor, using residual forest biomass as fuel. Results indicated that adding BCA at different doses of 1, 2 and 4 g/L could effectively enhance H2 generation when compared to the control test without BCA addition. This stimulatory effect was attributed to the crucial role of metal elements released from BCA such as sodium, potassium, calcium, magnesium, and iron in the provision of buffering capacity and inorganic nutrients for the functioning of hydrogen-forming bacteria. The highest H2 yield of 169 mL per g of volatile solids (VS) were obtained by adding only a small amount of BA (1 g/L) to the reactive system, representing a significant increment of 1070% compared to the control reactor. Furthermore, a significant decrease in the bacterial lag phase time from 26 h to 2.7 h, as well as about a 12-fold increase in the energy recovery as H2 gas was observed at BA dosage of 1 g/L in comparison with the control reactor. Overall, this study suggested that a proper addition of BCA could promote the DF process of FW and enhance biohydrogen production.  相似文献   

12.
A newly isolated strain Enterococcus faecium INET2 was used as inoculum for biohydrogen production through dark fermentation. The individual and interactive effect of initial pH, operation temperature, glucose concentration and inoculation amount on the accumulation of hydrogen during fermentation was examined by a Box–Behnken Design (BBD), and hydrogen production process was analyzed at the optimal condition. A significant interactive effect between glucose concentration and pH was observed, the optimal condition was initial pH 7.1, operation temperature 34.8 °C, glucose concentration 11.3 g/L and inoculation amount 10.4%. Hydrogen yield, maximum hydrogen production rate and hydrogen production potential were determined to be 1.29 mol H2/mol glucose, 86.7 L H2/L/h and 1.35 L H2/L. Metabolites analysis showed that E. faecium INET2 followed the pyruvate: formate lyase (Pfl) pathway in first 16 h, followed by the acetate-type fermentation and then shifted to butyrate-type fermentation. Maximum hydrogen production rate was accompanied with a quick formation of acetic acid.  相似文献   

13.
Hydrogen (H2) production from cheese processing wastewater via dark anaerobic fermentation was conducted using mixed microbial communities under thermophilic conditions. The effects of varying hydraulic retention time (HRT: 1, 2 and 3.5 days) and especially high organic load rates (OLR: 21, 35 and 47 g chemical oxygen demand (COD)/l/day) on biohydrogen production in a continuous stirred tank reactor were investigated. The biogas contained 5–82% (45% on average) hydrogen and the hydrogen production rate ranged from 0.3 to 7.9 l H2/l/day (2.5 l/l/day on average). H2 yields of 22, 15 and 5 mmol/g COD (at a constant influent COD of 40 g/l) were achieved at HRT values of 3.5, 2, and 1 days, respectively. On the other hand, H2 yields were monitored to be 3, 9 and 6 mmol/g COD, for OLR values of 47, 35 and 21 g COD/l/day, when HRT was kept constant at 1 day. The total measurable volatile fatty acid concentration in the effluent (as a function of influent COD) ranged between 118 and 27,012 mg/l, which was mainly composed of acetic acid, iso-butyric acid, butyric acid, propionic acid, formate and lactate. Ethanol and acetone production was also monitored from time to time.To characterize the microbial community in the bioreactor at different HRTs, DNA in mixed liquor samples was extracted immediately for PCR amplification of 16S RNA gene using eubacterial primers corresponding to 8F and 518R. The PCR product was cloned and subjected to DNA sequencing. The sequencing results were analyzed by using MegaBlast available on NCBI website which showed 99% identity to uncultured Thermoanaerobacteriaceae bacterium.  相似文献   

14.
Cheese whey powder (CWP) solution was used as the raw material for hydrogen gas production by mesophilic (35 °C) and thermophilic (55 °C) dark fermentations at constant initial total sugar and bacteria concentrations. Thermophilic fermentation yielded higher cumulative hydrogen formation (CHF = 171 mL), higher hydrogen yield (111 mL H2 g−1 total sugar), and higher hydrogen formation rate (3.46 mL H2 L−1 h−1) as compared to mesophilic fermentation. CHF in both cases were correlated with the Gompertz equation and the constants were determined. Despite the longer lag phase, thermophilic fermentation yielded higher specific H2 formation rate (2.10 mL H2 g−1cells h−1). Favorable results obtained in thermophilic fermentation were probably due to elimination of H2 consuming bacteria at high temperatures and selection of fast hydrogen gas producers.  相似文献   

15.
The objective of this work was to comparatively evaluate the production of biohydrogen (bio-H2) from tequila vinasses at optimized mesophilic and thermophilic conditions and to elucidate the main metabolic routes involved. Optimal temperatures of 35 °C and 55 °C, and pH of 5.5 maximized the bio-H2 production rates, 25.5 ± 0.01 NmL h−1 and 169.9 ± 8.9 NmL h−1 in the mesophilic and thermophilic regimens, respectively. During the operation of anaerobic sequencing batch reactors, the thermophilic process allowed a volumetric bio-H2 production rate of 519 ± 13 NmL-H2 L−1 d−1 equivalent to 750 ± 19 NmL-H2 Lvinasse−1, while the mesophilic one 448 ± 23 NmL-H2 L−1 d−1 and 647 ± 33 NmL-H2 Lvinasse−1, respectively. Furthermore, the gas produced under thermophilic conditions showed high hydrogen content (86.5%). Finally, formate degradation and glucose fermentation to acetic and butyric acids were the main metabolic routes involved in bio-H2 production under thermophilic conditions, while at mesophilic conditions, the lactate and formate degradation pathways governed.  相似文献   

16.
In this study, the effects of the hydraulic retention time (HRT), pH and substrate concentration on the thermophilic hydrogen production of starch with an upflow anaerobic sludge bed (UASB) reactor were investigated. Starch was used as a sole substrate. Continuous hydrogen production was stably attained with a maximum H2 yield of 1.7 mol H2/mol glucose. A H2-producing thermophilic granule was successfully formed with diameter in the range of 0.5–4.0 mm with thermally pretreated methanogenic granules as the nuclei. The metabolic pathway of the granules was drastically changed at each operational parameter. The production of formic or lactic acids is an indication of the deterioration of hydrogen production for H2-producing thermophilic granular sludge.  相似文献   

17.
In the present work, various carbon sources, xylose, glucose, galactose, sucrose, cellobiose, and starch were tested for thermophilic (60 °C) fermentative hydrogen production (FHP) by using the anaerobic mixed culture. An inoculum was obtained from a continuously-stirred tank reactor (CSTR) operated at pH 5.5 and HRT 12 h, and fed with tofu processing waste. The dominant species in the CSTR were found to be Thermoanaerobacterium thermosaccharolyticum and Clostridium thermosaccharolyticum, which are well known thermophilic H2-producers in anaerobic-state, and have the ability to utilize a wide range of carbohydrates. When initial pH was adjusted to 6.8 ± 0.1 but not controlled during fermentation, vigorous pH drop began within 5 h, and finally reached 4.0–4.5 in all carbon sources. Although over 90% of substrate removal was achieved for all carbon sources except cellobiose (71.7%), the fermentation performances were profoundly different with each other. Glucose, galactose, and sucrose exhibited relatively higher H2 yields whereas lower H2 yields were observed for xylose, cellobiose, and starch. On the other hand, when pH was controlled (pH ≥ 5.5), the fermentation performance was enhanced in all carbon sources but to a different extent. A substantial increase in H2 production was observed for cellobiose, a 1.9-fold increase of H2 yield along with a substrate removal increase to 93.8%, but a negligible increase for xylose. H2 production capabilities of all carbon sources tested were as follows: sucrose > galactose > glucose > cellobiose > starch > xylose. The maximum H2 yield of 3.17 mol H2/mol hexoseadded achieved from sucrose is equivalent to a 26.5% conversion of energy content in sucrose to H2. Acetic and butyric acids were the main liquid-state metabolites of all carbon sources while lactic acid was detected only in cellobiose, starch and xylose exhibiting relatively lower H2 yields.  相似文献   

18.
Process stability is a key operational issue when operating dark fermentation with mixed microbial cultures for hydrogen production. This study aimed at mitigating the instability of hydrogen production by separately adding exogenous pure strains suspected to have key roles in fermentative cultures. Among them, Clostridium acetobutylicum, Clostridium pasteurianum and Lactobacillus bulgaris which became predominant within the mixed culture strongly reduced the spectrum of produced metabolites and H2 production variability. Interestingly, Escherichia coli and Cupriavidus necator, which remained in minor abundance, maintained a high and stable H2 production while lowering the metabolic variability. 16S rRNA revealed that this could correlate to a simplification of the microbial diversity and the non-emergence of spore-forming competitors such as Sporolactobacillus sp. These results illustrate the potential beneficial role of minor OTUs as keystone species on H2-producing complex ecosystem and support the possibility of using them to engineer the ecosystem and maintain high and stable performances.  相似文献   

19.
A novel hydrogen-producing strain was isolated from gamma irradiated digested sludge and identified as Clostridium butyricum INET1. The fermentative hydrogen production performance of the newly isolated C. butyricum INET1 was characterized. Various carbon sources, including glucose, xylose, sucrose, lactose, starch and glycerol were used as substrate for hydrogen production. The operational conditions, including temperature, initial pH, substrate concentration and inoculation proportion were evaluated for their effects on hydrogen production, and the optimal condition was determined to be 35 °C, initial pH 7.0, 10 g/L glucose and 10% inoculation ratio. Cumulative hydrogen production of 218 mL/100 mL and hydrogen yield of 2.07 mol H2/mol hexose was obtained. The results showed that C. butyricum INET1 is capable of utilizing different substrates (glucose, xylose, sucrose, lactose, starch and glycerol) for efficient hydrogen production, which is a potential candidate for fermentative hydrogen production.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号