首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ternary eutectic Mg76.87Ni12.78Y10.35 (at. %) ribbons with mixed amorphous and nanocrystalline phases were prepared by melt spinning. The microstructures of the melt-spun, hydrogenated and dehydrogenated samples were examined and compared by X-ray diffraction and transmission electron microscopy. The amorphous structure transforms into a thermally stable nanocrystalline structure with a grain size of about 5 nm during hydrogen ab/desorption cycles. The Mg, Mg2Ni and phases with Y in the melt-spun state transform into MgH2, Mg2NiH4, Mg2NiH0.3, YH2 and YH3 after hydrogenation, and transform back to Mg, Mg2Ni and YH2 upon subsequent dehydrogenation. The reaction enthalpy (ΔH) and entropy (ΔS) of the higher plateau pressure corresponding to Mg2Ni hydride formation are −53.25 kJ mol−1 and −107.74 J K−1 mol−1, respectively. The amorphous/nanocrystalline structure effectively reduces the enthalpy and entropy of Mg2Ni hydride formation, but has little effect on Mg. The activation energy for dehydrogenation of the hydrogenated ribbons is 69 kJ mol−1. This suggests that Mg–Ni–Y with ternary eutectic composition can form an amorphous/nanocrystalline structure by melt spinning, and this nanostructure efficiently improves the thermodynamics and kinetics for hydrogen storage.  相似文献   

2.
Ternary Mg86Y10Ni4 alloy was successfully prepared by vacuum induction melting and subsequent melt-spinning technique. The phase composition and microstructure of the melt-spun and hydrogenated samples were characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy measurements. The melt-spun alloy had an amorphous structure, and it transformed into nanocrystalline during the first hydrogenation process. The hydrogenated sample was composed of MgH2, Mg2NiH4, YH2, and a small amount of YH3. The hydrogen absorption/desorption kinetics and thermodynamics were measured by Sievert's apparatus at various temperatures. It was found that the melt-spun Mg86Y10Ni4 alloy could be fully activated after five hydrogenation and dehydrogenation cycles at 380 °C, and it exhibited a reversible gravimetric hydrogen storage capacity of about 5.3 wt%. The enhanced hydrogen sorption kinetics during the first few cycles can be attributed to the increased specific surface caused by the pulverization and cracking of the alloy particles. The activation energy for dehydrogenation reaction was determined to be 67 kJ/mol and 71 kJ/mol by using Arrhenius equation and Kissinger equation respectively. The thermodynamics of the sample was also evaluated by pressure–composition–isotherms, and the results shown that the enthalpy and entropy changes of Mg/MgH2 transformation in the Mg86Y10Ni4 alloy were slightly higher than that of pure Mg/MgH2.  相似文献   

3.
We propose a simple strategy to effectively improve the hydrogenation and dehydrogenation kinetics of Mg based hydrogen storage alloys. We designed and prepared an Mg91.9Ni4.3Y3.8 alloy consisting of a large quantity of long-period stacking ordered (LPSO) phases. A type of highly dispersed multiphase nanostructure, which can markedly promote the de/hydrogenation kinetics, has been obtained utilizing the decomposition of LPSO phases at first a few of hydrogenation reactions. The fine structures of LPSO phases and the microstructural evolutions of the alloy during hydrogenation and dehydrogenation reactions were in detail characterized by means of transmission electron microscopy (TEM). The LPSO phases transformed to MgH2, Mg2NiH4, and YH3 after the first hydrogenation. The highly dispersed nanostructure at macro and micro (nano) scale range remains even after several de/hydrogenation cycles. The alloy shows excellent hydrogen storage properties and its reversible hydrogen absorption/desorption capacities are about 5.8 wt% at 300 °C. Particularly, the alloy exhibits very fast dehydrogenation kinetics. The dehydrogenated sample can release approximately 5 wt% hydrogen at 300 °C within 200 s and 5.5 wt% within 600 s. We elucidate the structural mechanism of the alloy with outstanding hydrogen storage performance.  相似文献   

4.
Mg80–xNi20Yx (x = 0–7) alloys were successfully prepared by using the vacuum induction melting method. The structural characterizations of the alloys were performed by using X-ray diffraction, scanning electron microscope, transmission electron microscope and X-ray photoelectron spectroscopy measurements. The effects of yttrium content on the microstructure and hydrogen storage properties of the as-cast alloys were investigated. The alloys are composed of a primary phase of Mg2Ni, lamella eutectic composites of Mg + Mg2Ni, and some amount of YNi3. The YNi3 has completely transformed into in situ formed nanoscale YH2 and YH3, with the formation of Mg2NiH4. Pulverization of the alloy particles was observed during the hydrogen absorption and desorption cycles. However, the phase composition remains unchanged even after 20 hydrogenation cycles. Yttrium addition significantly improved the hydrogen-absorption kinetic performance of the alloy. In addition, pressure-composition-temperature measurements indicated that the entropy and enthalpy changes for the formation and decomposition of MgH2 and Mg2NiH4 gradually decreased with the increase of yttrium content.  相似文献   

5.
In this paper, the Mg95-X-Nix-Y5 (x = 5, 10, 15) alloy were prepared by vacuum induction melting. The X-ray diffraction was used to analytical phase composition in different states, and the Scanning Electron Microscope and Transmission Electron Microscope were used to characterize the microstructure and crystalline state. Meanwhile, the kinetic properties of isothermal hydrogen adsorption and desorption at different temperatures also were tested by the Sievert isometric volume method. The results indicate that the hydrogenated Mg–Ni–Y samples is a nanocrystalline structure consists of MgH2, Mg2NiH4, and YH3 phases. And, the in-situ formed YH3 phase not decompose in the process of dehydrogenation and evenly dispersed in the mother alloy, which plays a paly a positive the catalytic role for the reversible cyclic reaction of Mg and Mg2Ni phases. In addition, the Ni elements are effectively to improve the thermodynamic properties of the Mg-based hydrogen storage alloy, the desorption enthalpy of the Ni5, Ni10, and Ni15 samples successively decrease to 84.5, 69.1, and 63.5 kJ/mol H2. The hydrogen absorption and desorption kinetics of the Mg–Ni–Y alloy are improved obviously with the increase of Ni content, especially for Mg80Ni15Y5 alloy, which the optimal hydrogenated temperature is reduced to 200 °C, and the 90% of the maximum hydrogen storage capacity can be absorbed within 1 min, about 5.4 wt % H2. Besides, the dehydrogenated activation energy of the Mg80Ni15Y5 alloy also is reduced to 67.0 kJ/mol, and it can completely release hydrogen at 320 °C within 5 min, which is almost reached the hydrogen desorption capability of Ni5 alloy at 360 °C. This means that Ni element is a very positive element to reduce the hydrogen desorption temperature.  相似文献   

6.
Mg24Ni10Cu2 and Mg22Y2Ni10Cu2 alloys were prepared via vacuum induction melting, and the nanocrystalline/amorphous Mg24Ni10Cu2 and Mg24Ni10Cu2 + 100 wt% Ni alloys were synthesized through ball milling method. Microstructure and hydrogen storage properties of the alloys were investigated and compared as well. The results suggest that adding Ni in the milling process significantly promotes formation of amorphous and nanocrystalline structure. For these four alloys, the as-milled Mg24Ni10Cu2 with 100 wt% Ni shows the best hydrogen storage performances that 2.03 wt% hydrogen content can be absorbed just in 1 min, and the electrochemical capacity reaches to 899.2 mAh/g. Furthermore, ball milling with Ni promotes the charge transfer reaction and hydrogen diffusion ability which is advantageous to the high rate discharge ability.  相似文献   

7.
Nanosizing is efficient as the dual-tuning of thermodynamics and kinetics for Mg-based hydrogen storage materials. The in-situ synthesis of nanocomposites through hydrogen-induced decomposition from long-period stacking ordered phase is proved effective to achieve active nano-sized catalysts with uniform dispersion. In this study, the Mg93Cu7-xYx (x = 0.67, 1.33, and 2) alloys with equalized Mg–Mg2Cu eutectic and 14H long-period stacking ordered phase of Mg92Cu3.5Y4.5 are prepared. Its solidification path is determined as α-Mg, 14H–Mg2Cu pair and Mg–Mg2Cu eutectic. The increased Y/Cu atomic ratio lowers the first-cycle hydrogenation rate of the alloys due to the increased 14H–Mg2Cu structure and reduced Mg–Mg2Cu eutectic interfaces. After the hydrogen-induced decomposition of the long-period stacking ordered phase, MgCu2 and YH3 nanoparticles are in-situ formed, and the following activation process significantly accelerates. The YH3 nanoparticles partly decompose to YH2 at 300 °C in vacuum and Mg–Mg2Cu-YHx nanocomposites are in-situ formed. The nano-sized YH2 helps catalyze H2 dissociation and the YHx/Mg interfaces stimulate H diffusion and the nucleation of MgH2. Therefore, the Mg93Cu5Y2 composite shows the fastest absorption rates. However, due to the positive effect of YHx/Mg interfaces on H diffusion and the negative effect of YH3 nanophases on the hydride decomposition, the minimum activation energy of 115.43 kJ mol−1 is obtained for the desorption of the Mg93Cu5.67Y1.33 hydride.  相似文献   

8.
Hydrogen storage materials research is entered to a new and exciting period with the advance of the nanocrystalline alloys, which show substantially enhanced absorption/desorption kinetics, even at room temperatures. In this work, hydrogen storage capacities and the electrochemical discharge capacities of the Mg2(Ni, Cu)-, LaNi5-, ZrV2-type nanocrystalline alloys and Mg2Ni/LaNi5-, Mg2Ni/ZrV2-type nanocomposites have been measured. The electronic properties of the Mg2Ni1-xCux, LaNi5 and ZrV2 alloys were calculated. The nanocomposite structure reduced hydriding temperature and enhanced hydrogen storage capacity of Mg-based materials. The nanocomposites (Mg,Mn)2Ni (50 wt%)-La(Ni,Mn,Al,Co)5 (50 wt%) and (Mg,Mn)2Ni (75 wt%)-(Zr,Ti)(V,Cr,Ni)2.4 (25 wt%) materials releases 1.65 wt% and 1.38 wt% hydrogen at 25 °C, respectively. The strong modifications of the electronic structure of the nanocrystalline alloys could significantly influence hydrogenation properties of Mg-based nanocomposities.  相似文献   

9.
In this work, the Mg90Y1.5Ce1.5Ni7 sample is successfully prepared by combining the vacuum induction melting and the mechanical milling. The phase composition and microstructure characteristics are studied by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy measurements. The hydrogenated sample is composed of MgH2, Mg2NiH4, CeH2.73 phases, whereas only the MgH2 and Mg2NiH4 phases are decomposed during dehydrogenation. The hydrogen storage properties of Mg90Y1.5Ce1.5Ni7 samples are measured by semi-automatic Sievert type apparatus. It is found that the samples could be fully activated within three cycles of absorption and dehydrogenation, with a reversible hydrogen storage capacity of about 5.6 wt%. Also, the “optimal hydrogenation temperature” is reduced to 200 °C, and the dehydrogenation activation energy is calculated to be 68.2 kJ/mol and 65.8 kJ/mol by using the Arrhenius and Kissinger equations, respectively. This work provides a scientific approach to promote the practical application of Mg-based alloy.  相似文献   

10.
The effect of Ni-substitution on the structure and hydrogen storage properties of Mg2Cu1−xNix (x = 0, 0.2, 0.4, 0.6, 0.8, 1) alloys prepared by a method combining electric resistance melting with isothermal evaporation casting process (IECP) has been studied. The X-ray single-crystal diffraction analysis results showed that the cell volume decreases with increasing Ni concentration, and crystal structure transforms Mg2Cu with face-centered orthorhombic into Ni-containing alloys with hexagonal structure. The Ni-substitution effects on the hydriding reaction indicated that absorption kinetics and hydrogen storage capacity increase in proportion to the concentration of the substitutional Ni. The activated Mg2Cu and Mg2Ni alloys absorbed 2.54 and 3.58 wt% H, respectively, at 573 K under 50 bar H2. After a combined high temperature and pressure activation cycle, the charged samples were composed of MgH2, MgCu2 and Mg2NiH4 while the discharged samples contained ternary alloys of Mg–Cu–Ni system with the helpful effect of rising the desorption plateau pressures compared with binary Mg–Cu and Mg–Ni alloys. With increasing nickel content, the effect of Ni is actually effective in MgH2 and Mg2NiH4 destabilization, leading to a decrease of the desorption temperature of these two phases.  相似文献   

11.
The hydrogenation characteristics and hydrogen storage kinetics of the melt-spun Mg10NiR (R = La, Nd and Sm) alloys have been studied comparatively. It is found that the Mg10NiNd and Mg10NiSm alloys are in amorphous state but the Mg10NiLa alloy is composed of an amorphous phase and minor crystalline La2Mg17 after melt-spinning. The alloys can be hydrogenated into MgH2, Mg2NiH4 and a rare earth metal hydride RHx. The rare earth metal hydride and Mg2NiH4 synergistically provide a catalytic effect on the hydrogen absorption–desorption reactions in the Mg−H2 system. The hydrogen storage kinetics is not influenced by different rare earth metal hydrides but by the particle size of the rare earth metal hydrides.  相似文献   

12.
For hydrogen storage applications a nanocrystalline Mg90Ni8RE2 alloy (RE = Y, Nd, Gd) was produced by melt spinning. The microstructure in the as-cast, melt-spun and hydrogenated state was characterized by X-ray diffraction and electron microscopy. Its activation, hydrogenation/dehydrogenation properties and cycle stability were examined by thermogravimetry in the temperature range from 50 °C to 385 °C and pressures up to 30 bar H2. It was found that the activated alloy can reach a reversible gravimetric hydrogen storage density of up to 5.6 wt.%-H. Furthermore, the reversible gravimetric hydrogen storage density increases with the number of hydrogenation/dehydrogenation cycles, while the dehydrogenation rate remained unchanged. This observation was attributed to the increase of the specific surface area of the ribbon due to cracking during repeated cycling. However, the microstructure of the hydrogenated alloy remained nanocrystalline throughout cycling.  相似文献   

13.
Nanostructuring and catalyzing are effective methods for improving the hydrogen storage properties of MgH2. In this work, transition-metal-carbides (TiC, ZrC and WC) are introduced into Mg–Ni alloy to enhance its hydrogen storage performance. 5 wt% transition-metal-carbide containing Mg95Ni5 (atomic ratio) nanocomposites are prepared by mechanical milling pretreatment followed by hydriding combustion synthesis and mechanical milling process, and the synergetic enhancement effects of Mg2NiH4 and transition-metal-carbides are investigated systematically. Due to the inductive effect of Mg2NiH4 and charge transfer effect between Mg/MgH2 and transition-metal-carbides, Mg95Ni5-5 wt.% transition-metal-carbide samples all exhibit excellent hydrogen storage kinetic at moderate temperature and start to release hydrogen around 216 °C. Among them, 2.5 wt% H2 (220 °C) and 4.7 wt% H2 (250 °C) can be released from the Mg95Ni5-5 wt.% TiC sample within 1800 s. The unique mosaic structure endows the Mg95Ni5-5 wt.% TiC with excellent structural stability, thus can reach 95% of saturated hydrogen capacity within 120 s even after 10 cycles of de-/hydrogenation at 275 °C. And the probable synergistic enhancement mechanism for hydrogenation and dehydrogenation is proposed.  相似文献   

14.
The hydrogenation properties of Mg100−xNix alloys (x = 0.5, 1, 2, 5) produced by melt spinning and subsequent high-energy ball milling were studied. The alloys were crystalline and, in addition to Mg matrix, contained finely dispersed particles of Mg2Ni and metastable Mg6Ni intermetallic phases. The alloys exhibited excellent hydrogenation kinetics at 300 °C and reversibly absorbed about 6.5 mass fraction (%) of hydrogen. At the same temperature, the as prepared Mg99.5Ni0.5 and Mg95Ni5 powders dissolved about 0.6 mass fraction (%) of hydrogen at the pressures lower than the hydrogen pressure corresponding to the bulk Mg-MgH2 two-phase equilibrium, exhibiting an extended apparent solubility of hydrogen in Mg-based matrix. The hydrogen solubility returned to its equilibrium value after prolonged hydrogenation testing at 300 °C. We discuss this unusually high solubility of hydrogen in Mg-based matrix in terms of ultrafine dispersion of nanometric MgH2 precipitates of different size and morphology formed on vacancy clusters and dislocation loops quenched-in during rapid solidification.  相似文献   

15.
The nanocrystalline Mg2Ni-type electrode alloys with nominal compositions of Mg20Ni10−xCux (x = 0, 1, 2, 3, 4) were synthesized by the melt spinning technique. The microstructures of the as-cast and spun alloys were characterized by XRD, SEM and HRTEM. The electrochemical hydrogen storage performances were tested by an automatic galvanostatic system. The results show that all the as-spun alloys hold typical nanocrystalline structure instead of an amorphous phase. The melt spinning does not modify the major phase Mg2Ni, but it leads to the formation of crystal defects such as stacking faults, dislocations, sub-grain boundary and twin-grain boundary. The melt spinning significantly improves the electrochemical hydrogen storage capacity of the alloys, whereas it slightly impairs the electrochemical cycle stability of the alloys. The substitution of Cu for Ni significantly ameliorates the electrochemical hydrogen storage performances of the alloys, involving both the electrochemical hydrogen storage capacity and the electrochemical charging and discharging stability.  相似文献   

16.
Nanocrystalline and amorphous Mg–Nd–Ni–Cu-based (Mg24Ni10Cu2)100−xNdx (x = 0–20) alloys were prepared by melt spinning and their structures as well as hydrogen storage characteristics were investigated. The analysis of XRD, TEM and SEM linked with EDS reveal that all the as-cast alloys hold a multiphase structure, containing Mg2Ni-type major phase as well as some secondary phases Mg6Ni, Nd5Mg41 and NdNi, whose amounts clearly grow with Nd content rising. Furthermore, the as-spun Nd-free alloy displays an entire nanocrystalline structure whereas the as-spun Nd-added alloys have a mixed structure of nanocrystalline and amorphous, moreover, the amorphization degree of the alloys visibly increases with Nd content rising, implying that the addition of Nd facilitates the glass forming in the Mg2Ni-type alloy. The addition of Nd results in a slight decrease in the hydrogen absorption capacity of the as-cast and spun alloys, but it significantly enhances their hydrogen storage kinetics and hydriding/dehydriding cycle stability of the alloy. In order to reveal the capacity degradation mechanism of the as-spun alloy, the structure evolution of the nanocrystalline and amorphous alloys during the hydriding–dehydriding cycles was investigated. It is found that the root causes of leading to the capacity degradation of the nanocrystalline and amorphous alloys are nanocrystalline coarsening, crystal defect decreasing and amorphous phase crystallizing.  相似文献   

17.
In order to improve the hydriding and dehydriding kinetics of the Mg2Ni-type alloys, Ni in the alloy was partially substituted by element Cu, and the nanocrystalline Mg2Ni-type Mg20Ni10−xCux (x = 0, 1, 2, 3, 4) alloys were synthesized by melt-spinning technique. The structures of the as-cast and spun alloys were studied by XRD, SEM and HRTEM. The hydrogen absorption and desorption kinetics of the alloys were measured using an automatically controlled Sieverts apparatus. The results show that the substitution of Cu for Ni does not change the major phase Mg2Ni. The hydrogen absorption capacity of the alloys first increases and then decreases with rising Cu content, but the hydrogen desorption capacity of the alloys grows with increasing Cu content. The melt spinning significantly improves the hydrogenation and dehydrogenation capacity and kinetics of the alloys.  相似文献   

18.
The structures and properties of hydrogen storage alloy Mg2Ni, of aluminum and silver substituted alloys Mg2−xMxNi (M = Al and Ag, x = 0.16667), and of their hydrides Mg2NiH4, Mg2−xMxNiH4 (M = Al and Ag, x = 0.125) have been calculated from first-principles. Results show that the primitive cell sizes of the intermetallic alloys and hydrides were reduced by substitution of Mg with Al or Ag. Also, the interaction of Ni–Ni was weakened by the substitution. A strong covalent interaction between H and Ni atoms forms tetrahedral NiH4 units in Mg2NiH4. The NiH4 unit near the Al/Ag atom became tripod-like NiH3 in Mg2−xMxNiH4 (M = Al, Ag), indicating that the hydrogen storage capacity was decreased by the substitution. The calculated enthalpies of hydrogenation for Mg2Ni, Mg2−xAlxNi and Mg2−xAgxNi are −65.14, −51.56 and −53.63 kJ/mol H2, respectively, implying that the substitution destabilizes the hydrides. Therefore, the substitution is an effective technique for improving the thermodynamic behavior of hydrogenation/dehydrogenation in magnesium-based hydrogen storage materials.  相似文献   

19.
Mg2NiH4, with fast sorption kinetics, is considered to be a promising hydrogen storage material. However, its hydrogen desorption enthalpy is too high for practical applications. In this paper, first-principles calculations based on density functional theory (DFT) were performed to systematically study the effects of Al doping on dehydrogenation properties of Mg2NiH4, and the underlying dehydrogenation mechanism was investigated. The energetic calculations reveal that partial component substitution of Mg by Al results in a stabilization of the alloy Mg2Ni and a destabilization of the hydride Mg2NiH4, which significantly alters the hydrogen desorption enthalpy ΔHdes for the reaction Mg2NiH4 → Mg2Ni + 2H2. A desirable enthalpy value of ∼0.4 eV/H2 for application can be obtained for a doping level of x ≥ 0.35 in Mg2−xAlxNi alloy. The stability calculations by considering possible decompositions indicate that the Al-doped Mg2Ni and Mg2NiH4 exhibit thermodynamically unstable with respect to phase segregation, which explains well the experimental results that these doped materials are multiphase systems. The dehydrogenation reaction of Al-doped Mg2NiH4 is energetically favorable to perform from a metastable hydrogenated state to a multiphase dehydrogenated state composed of Mg2Ni and Mg3AlNi2 as well as NiAl intermetallics. Further analysis of density of states (DOS) suggests the improving of dehydrogenation properties of Al-doped Mg2NiH4 can be attributed to the weakened Mg-Ni and Ni-H interactions and the decreasing bonding electrons number below Fermi level. The mechanistic understanding gained from this study can be applied to the selection and optimization of dopants for designing better hydrogen storage materials.  相似文献   

20.
The hydrogenation/dehydrogenation characteristics and hydrogen storage properties of nominal Mg3Ag and Mg3Y alloys prepared by induction melting were investigated. The as-melted Mg3Ag alloy was composed of Mg54Ag17 phase, while Mg3Y consisted of Mg24Y5 and Mg2Y phases. Mg54Ag17 transformed into MgAg and MgH2 during the first hydrogenation, and the phase transition of the following hy/dehydrogenation cycles was Mg3Ag + 2H2 ↔ MgAg + 2MgH2. Both Mg24Y5 and Mg2Y undertook disproportion reactions and decomposed into MgH2 and YH3. Experimental and calculated results demonstrated that there was no necessary relation between the thermodynamic stabilities and the size interstices in these alloys. The dehydrogenation enthalpy change (ΔH) and entropy change (ΔS) of Mg3Ag were calculated and compared with that of pure Mg, which indicated that the increase of ΔS could counteract the stabilization effect of ΔH, which offered a method for tuning the thermodynamic properties of Mg-based alloys.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号