首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
La(0.9−x)CexFeO3 perovskite-like catalysts were investigated for the production of hydrogen from simulated coal-derived syngas via the water-gas shift reaction in the temperature range 450-600 °C and at 1 atm. These catalysts exhibited higher activity at high temperatures (T ≥ 550 °C), compared to that of a commercial high temperature iron-chromium catalyst at 450 °C. Addition of a low Ce content (x = 0.2), has little influence on the formation of the LaFeO3 perovskite structure, but enhances catalytic activity especially at high temperatures with 19.17% CO conversion at 550 °C and 40.37% CO conversion at 600 °C. The LaFeO3 perovskite structure and CeO2 redox properties play an important role in enhancing the water-gas shift activity. Addition of a high Ce content (x = 0.6) inhibits the formation of the LaFeO3 perovskite structure and decreases catalyst activity.  相似文献   

2.
Ti modified Pt/ZrO2 catalysts were prepared to improve the catalytic activity of Pt/ZrO2 catalyst for a single-stage WGS reaction and the Ti addition effect on ZrO2 was discussed based on its characterization and WGS reaction test. Ti impregnation into ZrO2 increased the surface area of the support and the Pt dispersion. The reducibility of the catalyst was enhanced in the controlled Ti impregnation (∼20 wt.%) over Pt/ZrO2 by the Pt-catalysed reduction of supports, particularly, at the interface between ZrO2 and TiO2. The significant CO2 gas band in the DRIFTS results of Pt/Ti[20]/ZrO2 indicated that the Ti addition made the formate decomposition rate faster than the Pt/ZrO2 catalyst, linked with the enhanced Pt dispersion and reducibility of the catalyst. Consequently, Ti impregnation over the ZrO2 support led to a remarkably enhanced CO conversion and the reaction rate of Pt/Ti[20]/ZrO2 increased by a factor of about 3 from the bare Pt/ZrO2 catalyst.  相似文献   

3.
This study presents a three-dimensional numerical model that simulates the H2 production from coal-derived syngas via a water-gas shift reaction in membrane reactors. The reactor was operated at a temperature of 900 °C, the typical syngas temperature at gasifier exit. The effects of membrane permeance, syngas composition, reactant residence time, sweep gas flow rate and steam-to-carbon (S/C) ratio on reactor performance were examined. Using CO conversion and H2 recovery to characterize the reactor performance, it was found that the reactor performance can be enhanced using higher sweep gas flow rate, membrane permeance and S/C ratio. However, CO conversion and H2 recovery limiting values were found when these parameters were further increased. The numerical results also indicated that the reactor performance degraded with increasing CO2 content in the syngas composition.  相似文献   

4.
The composite cathodes of La0.4Ce0.6O1.8 (LDC)–La0.8Sr0.2MnO3 (LSM)–8 mol% yttria-stabilized zirconia (YSZ) with different LDC contents were investigated for anode-supported solid oxide fuel cells with thin film YSZ electrolyte. The oxygen temperature-programmed desorption profiles of the LDC–LSM–YSZ composites indicate that the addition of LDC increases surface oxygen vacancies. The cell performance was improved largely after the addition of LDC, and the best cell performance was achieved on the cells with the composite cathodes containing 10 wt% or 15 wt% LDC. The electrode polarization resistance was reduced significantly after the addition of LDC. At 800 °C and 650 °C, the polarization resistances of the cell with a 10 wt% LDC composite cathode are 70% and 40% of those of the cell with a LSM–YSZ composite cathode, respectively. The impedance spectra show that the processes associated with the dissociative adsorption of oxygen and diffusion of oxygen intermediates and/or oxygen ions on LSM surface and transfer of oxygen species at triple phase boundaries are accelerated after the addition of LDC.  相似文献   

5.
Monolithic catalysts were prepared by washcoating Ce0.8Zr0.2O2 slurries and then impregnating platinum or rhenium onto cordierite substrates, and characterized by Brunauer–Emmett–Teller (BET), X-ray diffraction (XRD), inductively coupled plasma (ICP), temperature-programmed-reduction (TPR) and temperature-programmed deposition of CO (CO-TPD) techniques. The effects of preparation parameters on the catalytic performance for water gas shift (WGS) reaction were investigated in details, including different Ce0.8Zr0.2O2 powder as washcoat, coat loadings, metal loadings, Pt/Re weight ratio and impregnation sequences. In addition, pyrophoricity (exposure to oxygen stream) and long-term stability were carried out over monolithic catalysts with the optimized composition. The results showed that Ce0.8Zr0.2O2 prepared by microemulsion methods was the preferred washcoat, and that 50 wt% Ce0.8Zr0.2O2 coat loading and 0.68 wt% Pt loading were required to reduce CO content to ca. 1%. The optimal catalytic performance was achieved over 0.11 wt% Re/0.34 wt% Pt/50 wt% Ce0.8Zr0.2O2–M/cordierite catalyst. Pyrophoricity tests indicated that no obvious activity loss was observed over 0.11 wt% Re/0.34 wt% Pt/50 wt% Ce0.8Zr0.2O2–M/cordierite catalyst after three exposures to oxygen; while 17% of the initial activity was lost over industrial B206 after one exposure. Monolithic 0.11 wt% Re/0.34 wt% Pt/50 wt% Ce0.8Zr0.2O2–M/cordierite catalyst exhibited good stability during 80 h on-stream test.  相似文献   

6.
Proton-transport-membrane water gas shift (WGS) reactors, based on thin dense SrCe0.7Zr0.2Eu0.1O3−δ membranes on tubular Ni–SrCe0.8Zr0.2O3−δ supports, were developed to increase H2 yields relative to thermodynamic limitations. Pure H2 permeate, total H2 production, and reactor side CO conversion and H2/CO effluent ratio were measured as a function of temperature, flow rate, CO concentration and H2O/CO feed ratios. CO conversion, total H2 production and yield, and the H2/CO in the reactor side effluent increased with increasing temperature and H2O/CO feed ratios. CO conversions of 84% and 90% were achieved at 900 °C with H2O/CO feed ratios of 1/1 and 2/1, respectively. These respective 77% and 44% increases in CO conversion compared to feed gas condition thermodynamics resulted in 73% and 42% increases in H2 production. Permeated H2 and total H2 production increased with increasing flow rate and CO concentration. Finally, membrane stability under WGS conditions was significantly improved by Zr substitution.  相似文献   

7.
La0.8Sr0.2Ga0.8Mg0.2O3 (LSGM) deposit in free standing planar shape was prepared by atmospheric plasma spraying (APS) to examine the coating microstructure and electrical conductivity to aim at applying APS LSGM to solid oxide fuel cells (SOFCs). The electrical conductivity of the plasma-sprayed LSGM coating was investigated. The coating microstructure was characterized by X-ray diffraction and scanning electron microscopy. The result showed that a fraction amorphous phase was present in the as-sprayed LSGM deposit, which starts to recrystallize at the temperature of 785 °C. The electrical conductivities of the LSGM with recrystallization treatment are 0.04 and 0.09 S cm−1 at 1000 °C at the directions perpendicular and parallel to the coating surfaces, respectively. The electrical conductivity at perpendicular direction is about one-tenth that of sintered bulk at 1000 °C. This result is due to the lamellar structure feature with the limited interface bonding which dominates the electrical conductivity of APS coatings. The activation energy for ion conduction within APS-deposited LSGM deposit depends on temperature range. The change of activation energy indicates that the ion transportation dominant changes with temperature.  相似文献   

8.
Ceria is proposed as an additive for La0.8Sr0.2MnO3 (LSM) cathodes in order to increase both their thermal stability and electrochemical properties after co-sintering with an yttria-stabilized zirconia (YSZ) electrolyte at 1350 °C. Results show that LSM without CeO2 addition is unstable at 1350 °C, whereas the thermal stability of LSM is drastically improved after addition of CeO2. In addition, results show a correlation between CeO2 addition and the maximum power density obtained in 300 μm thick electrolyte-supported single cells in which the anode and modified cathode have been co-sintered at 1350 °C. Single cells with cathodes not containing CeO2 produce only 7 mW cm−2 at 800 °C, whereas the power density increases to 117 mW cm−2 for a CeO2 addition of 12 mol%. Preliminary results suggest that CeO2 could increase the power density by at least two mechanisms: (1) incorporation of cerium into the LSM crystal structure, and (2) by modification or reduction of La2Zr2O7 formation at high temperature. This approach permits the highest LSM-YSZ co-sintering temperature so far reported, providing power densities of hundreds of mW cm−2 without the need for a buffer layer between the LSM cathode and YSZ electrolyte. Therefore, this method simplifies the co-sintering of SOFC cells at high temperature and improves their electrochemical performance.  相似文献   

9.
Single-chamber solid oxide fuel cells (SC-SOFCs), which apply fuel-oxidant (air) gas mixture as the atmosphere for both anode and cathode, are receiving many interests recently. This study aims to clarify the mechanism of oxygen reduction and methane oxidization over La0.8Sr0.2MnO3 (LSM) cathode in SC-SOFCs by an electrochemical method in combination with mass spectrometry (MS). Before cathodic polarization, a large polarization resistance (Rp) for oxygen reduction reaction (ORR) was observed and methane did not cause obvious effect on ORR because of the weak adsorption of methane over LSM surface. Cathodic polarization could decrease the Rp obviously due to the in-situ creation of oxygen vacancies; methane likely adsorbed on those oxygen vacancy sites to enhance its effect on ORR. Both the anodic and cathodic polarizations significantly increased the rate of methane oxidation over LSM electrode; in particular, the pumped oxygen anion was highly active for methane oxidation.  相似文献   

10.
Composite cathodes of La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) and Y2O3 stabilized ZrO2 (YSZ) are fabricated by impregnating the porous YSZ scaffold pre-formed on YSZ electrolyte substrate with a solution containing La, Sr, Co and Fe in desired composition. The performance stability of the cathodes is evaluated in air at 750 °C for up to 120 h by electrochemical impedance spectroscopy under the condition of open circuit. An insignificant small amount of resistive phase SrZrO3 is formed at 800 °C during cathode preparation; however, its volume is not further increased at 750 °C for 120 h, as indicated by the XRD results. The cathode polarization resistance (Rp) increases from 0.17 to 0.30 Ωcm2 after the 120 h test mainly due to the increase of the low frequency polarization resistance (Rp2), which characterizes the low frequency processes in the reaction of oxygen reduction. The morphology change of the well connected LSCF particles to dispersive and flattened configuration accounts for the increase of the Rp2 and in turn the degradation of cathode performance.  相似文献   

11.
In this work mesoporous nanocrystalline chromium free Fe–Al–Ni catalysts with various Fe/Al and Fe/Ni ratios were prepared by coprecipitation method for high temperature water gas shift reaction. The prepared catalysts were characterized using X-ray diffraction (XRD), N2 adsorption (BET), temperature-programmed reduction (TPR) and transmission electron microscopy (TEM) techniques. The catalytic results revealed that the catalyst with Fe/Al = 10 and Fe/Ni = 5 weight ratios exhibited the highest catalytic activity among the prepared catalysts and the commercial chromium containing one. This catalyst possessed a high surface area of 177.4 m2 g−1 with an average pore size of 4.3 nm with a high stability during 20 h time on stream. Furthermore, the effect of calcination temperature, GHSV and steam/gas ratio on the structural properties and catalytic performance of the catalyst with the highest activity was investigated.  相似文献   

12.
Ba0.5Sr0.5Co0.8Fe0.2O3 perovskite oxide has been synthesized by a sol–gel method, and characterized by XRD, SEM, BET. This oxide has a porous structure and a specific surface area of 2.78 m2 g−1. The catalytic activity of the oxide for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) in 0.1 M KOH solution has been studied by using a rotating ring-disk electrode (RRDE) technique. RRDE results show that the ORR mainly favors a direct four electron pathway, and a maximum cathodic current density of 6.25 mA cm−2 at 2500 rpm was obtained, which is close to the behavior of Pt/C (20 wt% Pt on carbon) electrocatalyst in the same testing conditions. Compared with pure C electrode, BSCF is more active for OER, a lower onset potential for OER and a bigger anodic current at the same applied potential are observed.  相似文献   

13.
Sm1.8Ce0.2CuO4-xCe0.9Gd0.1O1.95 (SCC-xCGO, x = 0-12 vol.%) composite cathodes supported on Ce0.9Gd0.1O1.95 (CGO) electrolyte are studied for applications in IT-SOFCs. Results show that Sm1.8Ce0.2CuO4 material is chemically compatible with Ce0.9Gd0.1O1.95 at 1000 °C. The composite electrode exhibits optimum microstructure and forms good contact with the electrolyte after sintering at 1000 °C for 4 h. The polarization resistance (Rp) reduces to the minimum value of 0.17 Ω cm2 at 750 °C in air for SCC-CGO06 composite cathode. The relationship between Rp and oxygen partial pressure indicates that the reaction rate-limiting step is the surface diffusion of the dissociative adsorbed oxygen on the composite cathode.  相似文献   

14.
The effect of increasing the reaction temperature to 300 °C on the activity, stability and deactivation behavior of a 4.5 wt.% Au/CeO2 catalyst in the water gas shift (WGS) reaction in idealized reformate was studied by kinetic and spectroscopic measurements at 300 °C and comparison with previously reported data for reaction at 180 °C under similar reaction conditions [A. Karpenko, Y. Denkwitz, V. Plzak, J. Cai, R. Leppelt, B. Schumacher, R.J. Behm, Catal. Lett. 116 (2007) 105]. Different procedures for catalyst pretreatment were used, including annealing at 400 °C in oxidative, reductive or inert atmospheres as well as redox processing. The formation/removal of stable adsorbed reaction intermediates and side products (surface carbonates, formates, OHad, COad) was followed by in situ IR spectroscopy (DRIFTS), the presence of differently oxidized surface species (Au0, Au0′, Au3+, Ce3+) was evaluated by XPS. The reaction characteristics at 300 °C generally resemble those at 180 °C, including (i) significantly higher reaction rates, (ii) comparable apparent activation energies (44 ± 1/50 ± 1 kJ mol−1 vs. 40 ± 1 kJ mol−1 at 180 °C), (iii) a correlation between deactivation of the catalyst and the build-up of stable surface carbonates, and (iv) a decrease of the initially significant differences in activity after different pretreatment procedures with reaction time. Different than expected, the tendency for deactivation did not decrease with higher temperature, due to enhanced carbonate decomposition, but increases.  相似文献   

15.
The La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) nanoceramic powders were prepared by sol–gel process using nitrate based chemicals for SOFC applications since these powders are considered as more promising cathode materials for SOFC. The citric acid was used as a chelating agent and ethylene glycol as a dispersant. The powders were calcined at 650 °C/6 h, 900 °C/3 h and 1150 °C/2 h in air using Thermolyne 47900 furnace. These powders were characterized by employing SEM/EDS, XRD, porosimetry and TGA/DTA techniques.  相似文献   

16.
CO2 reforming with simultaneous steam reforming or partial oxidation of methane to syngas over NdCoO3 perovskite-type mixed metal oxide catalyst (prereduced by H2) at different process conditions has been investigated. In the simultaneous CO2 and steam reforming, the conversion of methane and H2O and also the H2/CO product ratio are strongly influenced by the CO2/H2O feed-ratio. In the simultaneous CO2 reforming and partial oxidation of methane, the conversion of methane and CO2, H2 selectivity and the net heat of reaction are strongly influenced by the process parameters (viz. temperature, space velocity and relative concentration of O2 in the feed). In both cases, no carbon deposition on the catalyst was observed. The reduced NdCoO3 perovskite-type mixed-oxide catalyst (Co dispersed on Nd2O3) is a highly promising catalyst for carbon-free CO2 reforming combined with steam reforming or partial oxidation of methane to syngas.  相似文献   

17.
The apatite-type lanthanum silicate films were successfully synthesized by modified atmosphere plasma spraying using lanthanum oxide and silicon oxide mixed powders and precalcined hypereutectic powders in the size range 1–3 μm and 5–8 μm, respectively, as starting feedstock materials. The films differed not only in microstructural scale, but also in the characteristic of the degree of film densification. A detail describing the evolution of microstructure has been discussed. A considerable improvement in densification of the La10(SiO4)6O3 electrolyte films has been observed.  相似文献   

18.
A dense membrane of Ce0.9Gd0.1O1.95 on a porous cathode based on a mixed conducting La0.6Sr0.4Co0.2Fe0.8O3−δ was fabricated via a slurry coating/co-firing process. With the purpose of matching of shrinkage between the support cathode and the supported membrane, nano-Ce0.9Gd0.1O1.95 powder with specific surface area of 30 m2 g−1 was synthesized by a newly devised coprecipitation to make the low-temperature sinterable electrolyte, whereas 39 m2 g−1 nano-Ce0.9Gd0.1O1.95 prepared from citrate method was added to the cathode to favor the shrinkage for the La0.6Sr0.4Co0.2Fe0.8O3−δ. Bi-layers consisting of <20 μm dense ceria film on 2 mm thick porous cathode were successfully fabricated at 1200 °C. This was followed by co-firing with NiO–Ce0.9Gd0.1O1.95 at 1100 °C to form a thin, porous, and well-adherent anode. The laboratory-sized cathode-supported cell was shown to operate below 600 °C, and the maximum power density obtained was 35 mW cm−2 at 550 °C, 60 mW cm−2 at 600 °C.  相似文献   

19.
A series of CeO2 supports were firstly prepared by precipitation method with NH3⋅H2O (NH), (NH4)2CO3 (NC) and K2CO3 (KC) as precipitant, respectively, and then CuO/CeO2 catalysts were fabricated by depositing CuO on the as-obtained CeO2 supports by deposition-precipitation method. The effect of CeO2 supports prepared from different precipitants on the catalytic performance, physical and chemical properties of CuO/CeO2 catalysts was investigated with the aid of XRD, N2-physisorption, N2O chemisorption, FT-IR, TG, H2-TPR, CO2-TPD and cyclic voltammetry (CV) characterizations. The CuO/CeO2 catalysts were examined with respect to their catalytic performance for the water-gas shift reaction, and their catalytic activities and stabilities are ranked as: CuO/CeO2-NH > CuO/CeO2-NC > CuO/CeO2-KC. Correlating to the characteristic results, it is found that the CeO2 support prepared by precipitation with NH3⋅H2O as precipitant (i.e., CeO2-NH-300) has the best thermal stability and least surface “carbonate-like” species, which make the corresponding CuO/CeO2-NH catalyst presents the highest Cu-dispersion, the highest microstrain (i.e., the highest surface energy) of CuO, the strongest reducibility and the weakest basicity. While, the precipitants that contain CO32- (e.g. (NH4)2CO3 and K2CO3) result in more surface “carbonate-like” species of CeO2 supports and CuO/CeO2 catalysts. As a result, CuO/CeO2-NC and CuO/CeO2-KC catalysts present poor catalytic performance.  相似文献   

20.
Well-dispersed Fe0.3Co0.7/rGO nanocatalysts have been synthesized utilizing the two-step reduction method and successfully employed in the hydrolysis of ammonia borane (NH3BH3 AB) at room temperature. The mass percent of the supported Fe0.3Co0.7 nanoparticles (NPs) on graphene (rGO) sheets can reach to the maximum value of 50 wt%. The as-synthesized catalysts exerted satisfying activity and reusability for the hydrolytic dehydrogenation of AB at 298 K, especially for the specimen of 50 wt% Fe0.3Co0.7/rGO NPs. The catalytic hydrolysis reaction was rapidly completed within 1 min.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号