首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The production of biohydrogen through dark fermentation of palm oil mill effluent (POME) was evaluated in two-stages of biohydrogen in an anaerobic sequencing batch reactor (ASBR) system using enriched mixed culture for the first time. This study attempts to examine the effect of HRT and its interaction behavior with the solid retention time (SRT), and the sugar consumption. The effluent after discharged from the thermophilic reactor contained 7.61 g/L TC and 22.87 g/L TSS was fed to the secondary mesophilic reactor system. Results indicated that the overall sugar consumption reached 88.62% at the optimum HRT of 12 h with the SRT set to 20 h. The optimum hydrogen yield and HPR in the thermophilic stage were 2.99 mol H2/mol-sugar and 8.54 mmol H2/L·h respectively, while for the mesophilic stage were 1.19 mol H2/mol-sugar and 1.47 mmolH2/L·h respectively. The overall HPR showed an improvement and increase from 8.54 mmol H2/L·h to 10.34 mmol H2/L.h. Microbial community analysis of mixed culture in the two-stage thermophilic (55.0 °C) and mesophilic (37.0 °C) ASBR reactor was dominated by Thermoanaerobacterium sp. based on the PCR-DGGE technique.  相似文献   

2.
The feasibility of hydrogen generation from palm oil mill effluent (POME), a high strength wastewater with high solid content, was evaluated in an anaerobic sequencing batch reactor (ASBR) using enriched mixed microflora, under mesophilic digestion process at 37 °C. Four different hydraulic retention times (HRT), ranging from 96 h to 36 h at constant cycle length of 24 h and various organic loading rate (OLR) concentrations were tested to evaluate hydrogen productivity and operational stability of ASBR. The results showed higher system efficiency was achieved at HRT of 72 h with maximum hydrogen production rate of 6.7 LH2/L/d and hydrogen yield of 0.34 LH2/g CODfeeding, while in longer and shorter HRTs, hydrogen productivity decreased. Organic matter removal efficiency was affected by HRT; accordingly, total and soluble COD removal reached more than 37% and 50%, respectively. Solid retention time (SRT) of 4-19 days was achieved at these wide ranges of HRTs. Butyrate was found to be the dominant metabolite in all HRTs. Low concentration of volatile fatty acid (VFA) confirmed the state of stability and efficiency of sequential batch mode operation was achieved in ASBR. Results also suggest that ASBR has the potential to offer high digestion rate and good stability of operation for POME treatment.  相似文献   

3.
An anaerobic sequencing batch reactor (ASBR) was used to evaluate biological hydrogen production from carbohydrate-rich organic wastes. The goal of the proposed project was to investigate the effects of pH (4.9, 5.5, 6.1, and 6.7), and cyclic duration (4, 6, and 8 h) on hydrogen production. With the ASBR operated at 16-h HRT, 25 g COD/L, and 4-h cyclic duration, the results showed that the maximum hydrogen yield of 2.53 mol H2/mol sucroseconsumed appeared at pH 4.9. The carbohydrate removal efficiency declined to 56% at pH 4.9, which indirectly resulted in the reduction of total volatile fatty acid production. Acetate fermentation was the dominant metabolic pathway at pH 4.9. The concentration of mixed liquor volatile suspended solid (MLVSS) also showed a decrease from nearly 15,000 mg/L between pHs 6.1 and 6.7 to 6000 mg/L at pH 4.9. Investigation of the effect of cyclic duration found that hydrogen yield reached the maximum of 1.86 mol H2/mol sucroseconsumed at 4-h cyclic duration while ASBR was operating at 16-h HRT, 15 g COD/L, and pH 4.9. The experimental results showed that MLVSS concentration increased from 6200 mg/L at 4-h cyclic duration to 8500 mg/L at 8-h cyclic duration. However, there was no significant change in effluent volatile suspended solid concentration. The results of butyrate to acetate ratio showed that using this ratio to correlate the performance of hydrogen production is not appropriate due to the growth of homoacetogens. In ASBR, the operation is subject to four different phases of each cycle, and only the complete mix condition can be achieved at react phase. The pH and cyclic duration under the unique operations profoundly impact fermentative hydrogen production.  相似文献   

4.
Anaerobic sequencing batch reactor (ASBR) process offers great potential for H2 production from wastewaters. In this study, an ASBR was used at first time for enhanced continuous H2 production from fungal pretreated cornstalk hydrolysate by Thermoanaerobacterium thermosaccharolyticum W16. The reactor was operated at different hydraulic retention times (HRTs) of 6, 12, 18, and 24 h by keeping the influent hydrolysate constant at 65 mmol sugars L−1. Results showed that increasing the HRT from 6 to 12 h led to the H2 production rate increased from 6.7 to the maximum of 9.6 mmol H2 L−1 h−1 and the substrate conversion reached 90.3%, although the H2 yield remained at the same level of 1.7 mol H2 mol−1 substrate. Taking into account both H2 production and substrate utilization efficiencies, the optimum HRT for continuous H2 production via an ASBR was determined at 12 h. Compared with other continuous H2 production processes, ASBR yield higher H2 production at relatively lower HRT. ASBR is shown to be another promising process for continuous fermentative H2 production from lignocellulosic biomass.  相似文献   

5.
A few studies have been made on fermentative hydrogen production from marine algae, despite of their advantages compared with other biomass substrates. In this study, fermentative hydrogen production from Laminaria japonica (one brown algae species) was investigated under mesophilic condition (35 ± 1 °C) without any pretreatment method. A feasibility test was first conducted through a series of batch cultivations, and 0.92 mol H2/mol hexoseadded, or 71.4 ml H2/g TS of hydrogen yield was achieved at a substrate concentration of 20 g COD/L (based on carbohydrate), initial pH of 7.5, and cultivation pH of 5.5. Continuous operation for a period of 80 days was then carried out using anaerobic sequencing batch reactor (ASBR) with a hydraulic retention time (HRT) of 6 days. After operation for approximately 30 days, a stable hydrogen yield of 0.79 ± 0.03 mol H2/mol hexoseadded was obtained. To optimize bioenergy recovery from L. japonica, an up-flow anaerobic sludge blanket reactor (UASBr) was applied to treat hydrogen fermentation effluent (HFE) for methane production. A maximum methane yield of 309 ± 12 ml CH4/g COD was achieved during the 90 days operation period, where the organic loading rate (OLR) was 3.5 g COD/L/d.  相似文献   

6.
In this study, a two-stage fermentation system to produce H2 and CH4 from Laminaria japonica was developed. In the first stage (dark fermentative H2 production, DFHP), response surface methodology (RSM) with a Box-Behnken design (BBD) was applied for optimization of operational parameters, including cycle-frequency, HRT, and substrate concentration, using an intermittent-continuously stirred tank reactor (i-CSTR). Overall performance revealed that the degree of importance of the three variables in terms of H2 yield is as follows: cycle-frequency > substrate concentration > HRT. In the confirmation test, H2 yield of 113.1 mL H2/g dry cell weight (dcw) was recorded, corresponding with 96.3% of the predicted response value under desirable operational conditions (cycle-frequency of 17 hr, HRT of 2.7 days, and substrate concentration of 31.1 g COD/L). In the second stage, an anaerobic sequencing batch reactor (ASBR) and an up-flow anaerobic sludge blanket reactor (UASBr) were employed for CH4 production from H2 fermented solid state (HFSS) and H2 fermented liquid state (HFLS), respectively. The CH4 producing ASBR and UASBr showed a stable CH4 yield and COD removal until a HRT of 12 days and OLR of 3.5 g COD/L/d, respectively. Subsequently, for recycling of CH4 fermented effluent from the UASBr (MFEUASBr) as diluting water in DFHP, the tap water and MFEUASBr mixing ratio (T/M ratio) was optimized (a T/M ratio of 5:5) in a batch test using heat pretreated MFEUASBr at 90 °C for 20 min, resulting in the best performance. Although slight decreases of H2 yield (7.6%) and H2 production rate (3.5%) were recorded, 100% reduction of alkali addition was possible, indicating potential to maximize economic benefits. However, a drastic decrease of H2 productivity and a change of liquid-state metabolites were observed with the use of non-heat pretreated MFEUASBr. These results coincided with those of the microbial analysis, where non-H2 producing bacteria, such as Selenomonas sp., were detected. The results indicate that pretreatment of MFEUASBr may be required in order to recycle it in DFHP.  相似文献   

7.
Batch and continuous modes for bio-hydrogen production by co-digesting cassava starch wastewater with buffalo dung were investigated. Response surface methodology with central composite design was used to optimize the bio-hydrogen production conditions. A hydrogen production potential of 1787 mL H2/L was achieved under optimal conditions of 2.84 g/L of NaHCO3, an initial pH of 6.77 and a total chemical oxygen demand (tCOD)/total nitrogen ratio of 42.36. A continuous stirred tank reactor was operated under the optimum conditions from batch mode to investigate the effects of hydraulic retention time (HRT) of 72, 60 and 48 h on hydrogen production. The highest hydrogen content, hydrogen production rate and hydrogen yield of 33%, 839 mL H2/L.d and 16.90 mL H2/g-CODadded, respectively, were achieved at a HRT of 60 h. The predominant hydrogen producer under the optimal conditions in batch mode was Clostridium sp. while Clostridium sp., Megasphaera sp. and Chloroflexi sp. were observed in the continuous hydrogen production mode at an optimal HRT.  相似文献   

8.
Immobilized Clostridium butyricum TISTR 1032 on sugarcane bagasse improved hydrogen production rate (HPR) approximately 1.2 times in comparison to free cells. The optimum conditions for hydrogen production by immobilized C. butyricum were initial pH 6.5 and initial sucrose concentration of 25 g COD/L. The maximum HPR and hydrogen yield (HY) of 3.11 L H2/L substrate·d and 1.34 mol H2/mol hexose consumed, respectively, were obtained. Results from repeated batch fermentation indicated that the highest HPR of 3.5 L H2/L substrate·d and the highest HY of 1.52 mol H2/mol hexose consumed were obtained at the medium replacement ratio of 75% and 50% respectively. The major soluble metabolites in both batch and repeated batch fermentation were butyric and acetic acids.  相似文献   

9.
The feasibility of thermophilic biomethane production from acidified palm oil mill effluent (POME) was assessed in a 5 L anaerobic sequencing batch reactor (ASBR). The effects of various hydraulic retention time (HRT) (10-1 d) on methane production performance and the stability of ASBR in treating acidified POME were evaluated herein. It was found that the highest methane productivity of 5.65 L CH4/L/d could be attained at HRT of 2 d. However, the removal of chemical oxygen demand (COD) and volatile fatty acid (VFA) at this HRT is rather low (65-62%) hence making it inefficient to operate at HRT 2 d since most of the contaminants remained in the liquid streams. Thus the most recommended HRT was 3 d with maximum methane productivity of 3.96 L CH4/L/d with corresponding methane yield of 260.3 L CH4/kgCODremoved. The COD removal efficiency at 3 d HRT was 71%, and the VFA consumption was more than 80%. The correlation of total VFA: total alkalinity (TVFA: TA) at HRT of 3 d was found to be 0.1. This recommended HRT of 3 is equally shorter than any previously reported application of POME as a substrate for thermophilic biomethane.  相似文献   

10.
The performance of biohydrogen production in an anaerobic sequencing batch reactor (ASBR) was evaluated with respect to variations in the key operational parameters – pH, hydraulic retention time HRT, and organic loading rate OLR using sugar refinery wastewater as substrate. Analysis of variance (ANOVA) indicated HRT had less significant influence on hydrogen content and yield in comparison to pH and OLR, whereas OLR has much impact on hydrogen production rate. Taxonomic analysis results showed that diverse bacterial species contributed to hydrogen production and the dominant species in the bioreactor were governed by all operational parameters. Even without pretreatment of the seed sludge, a high proportion of Clostridium spp. over the other bacterial species was observed at pH 5.5, and this is compatible with the high hydrogen productivity. Consequently, pH 5.5, HRT 10 h, and OLR 15 kg/m3 d were delineated as the optimal operational conditions for an ASBR fed with sugar refinery wastewater.  相似文献   

11.
The optimum values of hydraulic retention time (HRT) and organic loading rate (OLR) of an anaerobic sequencing batch reactor (ASBR) for biohydrogen production from palm oil mill effluent (POME) under thermophilic conditions (60 °C) were investigated in order to achieve the maximum process stability. Microbial community structure dynamics in the ASBR was studied by denaturing gradient gel electrophoresis (DGGE) aiming at improved insight into the hydrogen fermentation microorganisms. The optimum values of 2-d HRT with an OLR of 60 gCOD l−1 d−1 gave a maximum hydrogen yield of 0.27 l H2 g COD−1 with a volumetric hydrogen production rate of 9.1 l H2 l−1 d−1 (16.9 mmol l−1 h−1). The hydrogen content, total carbohydrate consumption, COD (chemical oxygen demand) removal and suspended solids removal were 55 ± 3.5%, 92 ± 3%, 57 ± 2.5% and 78 ± 2%, respectively. Acetic acid and butyric acid were the major soluble end-products. The microbial community structure was strongly dependent on the HRT and OLR. DGGE profiling illustrated that Thermoanaerobacterium spp., such as Thermoanaerobacterium thermosaccharolyticum and Thermoanaerobacterium bryantii, were dominant and probably played an important role in hydrogen production under the optimum conditions. The shift in the microbial community from a dominance of T. thermosaccharolyticum to a community where also Caloramator proteoclasticus constituted a major component occurred at suboptimal HRT (1 d) and OLR (80 gCOD l−1 d−1) conditions. The results showed that the hydrogen production performance was closely correlated with the bacterial community structure. This is the first report of a successful ASBR operation achieving a high hydrogen production rate from real wastewater (POME).  相似文献   

12.
The objective of this study was to investigate the enhancement of hydrogen production from alcohol wastewater by adding fermentation residue using an anaerobic sequencing batch reactor (ASBR) under thermophillic operation (55 °C) and at a constant pH of 5.5. The digestibility of the added fermentation residue was also evaluated. For a first set of previous experiments, the ASBR system was operated to obtain an optimum COD loading rate of 50.6 kg/m3 d of alcohol wastewater without added fermentation residue and the produced gas contained 31% H2 and 69% CO2. In this experiment, the effect of added fermentation residue (100–1200 mg/l) on hydrogen production performance was investigated under a COD loading rate of 50.6 kg/m3 d of the alcohol wastewater. At a fermentation residue concentration of 1000 mg/l, the produced gas contained 40% H2 and 60% CO2 without methane and the system gave the highest hydrogen yield and specific hydrogen production rate of 128 ml/g COD removed and 2880 ml/l d, respectively. Under thermophilic operation with a high total COD loading rate (51.8 kg/m3 d) and a short HRT (21 h) at pH 5.5, the ASBR system could only break down cellulose (41.6%) and hemicellulose (21.8%), not decompose lignin.  相似文献   

13.
This study investigated the effects of seed sludges, alkalinity and HRT on the thermophilic fermentative hydrogen production from cassava stillage. Five different kinds of sludges were used as inocula without any pretreatment. Though batch experiments showed that mesophilic anaerobic sludge was the best inoculum, the hydrogen yields with different seed sludges were quite similar in continuous experiments in the range of 82.9–92.3 ml H2/gVS without significant differences which could be attributed to the establishment of Uncultured Thermoanaerobacteriaceae bacterium-dominant microbial communities in all reactors. It is indicated that results obtained from batch experiments are not consistent with those from continuous experiments and all the tested seed sludges are good sources for continuous thermophilic hydrogen production from cassava stillage. The influent alkalinity of 6 g NaHCO3/L and HRT 24 h were optimal for hydrogen production with hydrogen yield of 76 ml H2/gVS and hydrogen production rate of 3215 ml H2/L/d. Butyrate was the predominant metabolite in all experiments. With the increase in alkalinity of more than 6 g/L, the concentration of VFA/ethanol increased while hydrogen yield decreased due to the higher concentration of acetate and propionate. The decrease in HRT resulted in the higher hydrogen production rate but lower hydrogen yield. Variation of hydrogen yields were quite correlated with butyrate/acetate (B/A) ratio with different influent alkalinities, however, butyrate was important parameter to justify the hydrogen yields with various HRTs.  相似文献   

14.
In this study, controlling an anaerobic microbial community to increase the hydrogen (H2) yield during the degradation of lignocelluosic sugars was accomplished by adding linoleic acid (LA) at low pH and reducing the hydraulic retention time (HRT) of an anaerobic sequencing batch reactor (ASBR). At pH 5.5 and a 1.7 d HRT, the maximum H2 yield for LA treated cultures fed glucose or xylose reached 2.89 ± 0.18 mol mol−1 and 1.94 ± 0.17 mol mol−1, respectively. The major soluble metabolites at pH 5.5 with a 1.7 day HRT differed between the control and LA treated cultures. A metabolic shift toward H2 production resulted in increased hydrogenase activity in both the xylose (13%) and glucose (34%) fed LA treated cultures relative to the controls. In addition, the Clostridia population and the H2 yield were elevated in cultures treated with LA. A flux balance analysis for the LA treated cultures showed a reduction in homoacetogenic activity which was associated with reducing the Bacteriodes levels from 12% to 5% in the glucose fed cultures and 16% to 10% in the xylose fed cultures. Strategies for controlling the homoacetogens and optimal hydrogen production from glucose and xylose are proposed.  相似文献   

15.
The partial pressure of hydrogen is an extremely important factor for hydrogen generation. This study investigated the effect of reduced pressure (via vacuum) on hydrogen production in a CSTR reactor. The results show that the reduced pressure condition is more effective in enhancing H2 production at lower HRT (e.g., 8–4 h) than at higher HRT (e.g., 12 h). The optimal hydrogen yield and overall hydrogen production efficiency occurred at a HRT of 6 h with a value of 4.50 mol H2/mol sucrose and 56.2%, respectively. Meanwhile, at HRT 6 h the hydrogen production rate was 0.937 mol/L/d. In addition, the HPR could be further improved to 1.196 mol/L/d when the HRT was shortened to 4 h, obtaining a 37–271% increase in HPR when compared with that described in the relevant reports. For all experiments, butyrate and acetate were the two primary soluble metabolites, accounting for 85–99% of total soluble microbial products. Predominant production of acetate and butyrate demonstrates the efficient H2 fermentation with reduced pressure processes.  相似文献   

16.
This study evaluated hydrogen production and chemical oxygen demand removal (COD removal) from tapioca wastewater using anaerobic mixed cultures in anaerobic baffled reactor (ABR). The ABR was conducted based on the optimum condition obtained from the batch experiment, i.e. 2.25 g/L of FeSO4 and initial pH of 9.0. The effects of the varying hydraulic retention times (HRT: 24, 18, 12, 6 and 3 h) on hydrogen production and COD removal in a continuous ABR were operated at room temperature (32.3 ± 1.5 °C). Hydrogen production rate (HPR) increased with a reduction in HRT i.e. from 164.45 ± 4.14 mL H2/L.d (24 h HRT) to 883.19 ± 7.89 mL H2/L.d (6 h HRT) then decreased to 748.54 ± 13.84 mL H2/L.d (3 h HRT). COD removal increased with reduction in HRT i.e. from 14.02 ± 0.58% (24 h HRT) to 29.30 ± 0.84% (6 h HRT) then decreased to 21.97 ± 0.94% (3 h HRT). HRT of 6 h was the optimum condition for ABR operation as indicated.  相似文献   

17.
This study aims to investigate the effect of substrate concentration and hydraulic retention time (HRT) on hydrogen production in a continuous anaerobic bioreactor from unhydrolyzed common reed (Phragmites australis) an invasive wetland and perennial grass. The bioreactor has capacity of 1 L and working volume of 600 mL. It was operated at pH 5.5, temperature at 37 °C, hydraulic retention time (HRT) 12 h, and variation of substrate concentration from 40, 50, and 60 g COD/L, respectively. Afterward, the HRT was then varied from 12, 8, to 4 h for checking the optimal biohydrogen production. Each condition was run until reach steady state on hydrogen production rate (HPR) which based on hydrogen percentage and daily volume. The results were obtained the peak of substrate concentration was at the 50 g COD/L with HRT 12 h, average HPR and H2 concentration were 28.71 mL/L/h and 36.29%, respectively. The hydrogen yield was achieved at 106.23 mL H2/g CODre. The substrate concentration was controlled at 50 g COD/L for the optimal HRT experiments. It was found that the maximum of average HPR and H2 concentration were 43.28 mL/L/h and 36.96%, respectively peak at HRT 8 h with the corresponding hydrogen yield of 144.35 mL H2/g CODre. Finally, this study successful produce hydrogen from unhydrolyzed common reed by enriched mixed culture in continuous anaerobic bioreactor.  相似文献   

18.
Non-sterile operation of continuous stirred tank reactor (CSTR) augmented with Clostridium butyricum and fed with sugarcane juice was studied at various hydraulic retention time (HRT). The maximum hydrogen production rate and yield of 3.38 mmol H2/L/h and 1.0 mol H2/mol hexose consumed, respectively, were achieved at HRT 4 h. The relationship of the augmented microorganism and normal flora in the fermentation system under non-sterile condition were analyzed by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). Initially, at HRT 36 h, other species related to Lactobacillus harbinensis and Klebseilla pneumoniae were present as a major group in the reactor. When HRT was decreased to 12, 6 and 4 h, C. butyricum was present with a competition between L. harbinensis and K. pneumoniae. Results indicated that augmented C. butyricum could compete with contaminated microorganisms during non-sterile operation at low HRT (12-4 h) with the support of normal flora (K. pneumoniae).  相似文献   

19.
Liquid swine manure supplemented with glucose (10 g/L) was used as substrate for hydrogen production using an anaerobic sequencing batch reactor at 37 ± 1 °C and pH 5.0 under different hydraulic retention times (HRTs). Decreasing HRT from 24 to 8 h caused an increasing hydrogen production rate from 0.05 to 0.15 L/h/L. Production rates of both total biogas and hydrogen were linearly correlated to HRT with R2 being 0.993 and 0.997, respectively. The hydrogen yield ranged between 1.18 and 1.63 mol-H2/mol glucose and the 12 h HRT was preferred for high production rate and efficient yield. For all the five HRTs examined, the glucose utilization efficiency was over 98%. The biogas mainly consisted of carbon dioxide and hydrogen (up to 43%) with no methane detected throughout the experiment. Ethanol and organic acids were the major aqueous metabolites produced during fermentation, with acetic acid accounting for 56–58%. The hydrogen yield was found to be related to the acetate/butyrate ratio.  相似文献   

20.
Hydrogen production in a novel sonicated biological hydrogen reactor (SBHR) was investigated and compared with a continuous stirred tank reactor (CSTR). The two systems were operated at a hydraulic retention time (HRT) of 12 h and two organic loading rates (OLRs) of 21.4 and 32.1 g COD/L.d. The average hydrogen production rates per unit reactor volume for the conventional CSTR were 2.6 and 2.8 L/L.d, as compared with 4.8 and 5.6 L/L.d for SBHR, at the two OLRs, respectively. Hydrogen yields of 1.2 and 1.0 mol H2/mol glucose were observed for the CSTR, respectively, while for the SBHR, the hydrogen yields were 2.1 and 1.9 mol H2/mol glucose at the two OLRs, respectively. The hydrogen content in the SBHR’s headspace was higher than that in CSTR by 10% and 31% at OLRs of 21.4 and 32.1 g COD/L.d, respectively. Both glucose conversion efficiency and HAc/HBu ratio in the SBHR were higher than in the conventional CSTR at both OLRs. The biomass yield of about 0.32 g VSS/g COD observed in the CSTR and 0.23 g VSS/g COD in the SBHR substantiate the higher H2 yield in the SBHR. DGGE analysis confirmed the specificity of the microbial hydrogen-producing culture in the SBHR, with two different hydrogen producers (Clostridium sp. and Citrobacter freundii) detected in the SBHR and not detected in the CSTR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号