首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CoB/ZIF-8 supported catalysts were successfully prepared using Co/Zn-ZIF-8 as the precursor by single-step reduction, which was applied in hydrogen release from the hydrolysis of NaBH4. Reducible Co ions of Co/Zn-ZIF-8 can be partially in-situ transformed into CoB by direct reduction, whereas ZIF-8 framework structure can be well preserved due to the resistance of Zn to reducing ambiences. Accordingly, CoB active components can be highly loaded onto ZIF-8 support to produce CoB/ZIF-8 catalysts. The texture evolution of Co/Zn-ZIF-8 during reduction was investigated by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscope and nitrogen adsorption–desorption isotherms. Compared with the reduction of Co-ZIF-67, the framework structure of Co/Zn-ZIF-8 can be effectively preserved although Co ions of Co/Zn-ZIF-8 were partially reduced into cobalt-based alloy. In the hydrogen release from hydrolysis of NaBH4, CoB/ZIF-8 supported catalyst exhibits excellent catalytic activity. The effect of NaOH concentration, NaBH4 concentration and reaction temperature on hydrolysis reaction of NaBH4 was deeply studied based on this catalyst. Compared with other published catalysts, this catalyst exhibits relatively low activation energy of about 57.72 kJ mol?1.  相似文献   

2.
Herein, the CoB catalyst supported on the sepiolite clay treated with phosphoric acid was utilized to produce hydrogen from the NaBH4 hydrolysis. In order to analyse the performance of the phosphoric acid treated sepiolite clay supported-CoB catalyst, the NaBH4 concentration effect, phosphoric acid concentration effect, phosphoric acid impregnation time effect, CoB catalyst percentage effect, and temperature effect were studied. In addition, XRD, XPS, SEM, TEM, BET, and FTIR analysis were performed for characterization of Co–B catalyst supported on the acid-treated sepiolite. The completion time of this hydrolysis reaction with Co–B (20%) catalyst supported on the sepiolite treated by 5 M phosphoric acid was approximately 80 min, whereas the completion time of this hydrolysis reaction with acid-free sepiolite-supported Co–B (20%) catalyst was approximately 260 min. There is a five-fold increase in the maximum production rate. The maximum hydrogen production rates of this hydrolysis reaction at 30 and 60 °C were found as 1486 and 5025 ml min−1g−1catalyst, respectively. Activation energy was found as 21.4 kJ/mol. This result indicates that the acid treatment on sepiolite is quite successful. The re-usability of NaBH4 hydrolysis reaction by CoB catalyst supported on sepiolite treated phosphoric acid for successive five cycles of NaBH4 at 30 °C was investigated.  相似文献   

3.
The fast release of hydrogen from borohydride is highly desired for a fuel cell system. However, the generation of hydrogen from borohydride is limited by the low activity and low stability of the catalyst. Herein, a highly active catalyst is synthesized through a simple one-step chemical reduction using bacterial cellulose (BC) derived carbon as a support for the active Co–B alloy. The morphology and microstructure of the BC/Co–B nanocomposite are characterized by SEM, TEM, XRD, and BET adsorption analysis. The BC/Co–B possesses high surface area (125.31 m2 g?1) high stability and excellent catalytic activity for the hydrolysis of NaBH4. Compared with unsupported Co–B nanocomposite or commercial carbon supported Co–B, the BC/Co–B nanocomposite shows greatly improved catalytic activity for the hydrolysis of NaBH4 with a high hydrogen generation rate of 3887.1 mL min?1 g?1 at 30 °C. An activation energy of 56.37 kJ mol?1 was achieved for the hydrolysis reaction. Furthermore, the BC/Co–B demonstrated excellent stability. These results indicate that the BC/Co–B nanocomposite is a promising candidate for the hydrolysis of borohydrides.  相似文献   

4.
Polymer template-Ru composite (Ru/IR-120) catalyst was prepared using a simple and fast method for generating hydrogen from an aqueous alkaline NaBH4 solution. The hydrogen generation rate was determined as a function of solution temperature, NaBH4 concentration, and NaOH (a base-stabilizer) concentration. The maximum hydrogen generation rate reached 132 ml min−1 g−1 catalyst at 298 K, using a Ru/IR-120 catalyst that contained only 1 wt.% Ru. The catalyst exhibits a quick response and good durability during the hydrolysis of alkaline NaBH4 solution. The activation energy for the hydrogen generation reaction was determined to be 49.72 kJ mol−1.  相似文献   

5.
Effective Co/Cu, CoB/Cu, and CoBM (M = Mo,Zn,Fe)/Cu catalysts were prepared on the copper surface by a simple electroless deposition method using a morpholine borane as a reducing agent in the glycine solution. The activity of the deposited catalysts was investigated for hydrogen generation from an alkaline sodium borohydride solution. It was determined that these synthesized catalysts demonstrated the catalytic activity for the hydrolysis reaction of NaBH4. The lowest obtained activation energy (EA) of the hydrolysis reaction of NaBH4was 27 kJ mol?1 for the CoBMo/Cu catalyst. The hydrogen generation rate of 15.30 ml min?1 was achieved using CoBMo/Cu catalysts at 313 K and it increased ~3.5 times with the increase of temperature to 343 K. The highest hydrogen generation rate obtained by CoBMo/Cu films may be related to the hierarchical cauliflower-shaped 3D structures and the high roughness surface area. Moreover, the CoBMo/Cu catalyst showed an excellent reusability.  相似文献   

6.
In this study, montmorillonite (MMT) clay was modified with different acids to be used as support material. The modified MMT clay was used to obtain hydrogen in the hydrolysis reactions of NaBH4 (NaBH4-HR) as a support material for the Co–B and Co–Fe–B catalyst. During the activation of MMT clay, the effects of different acids, phosphoric acid (H3PO4) concentration, and impregnation time with H3PO4 were investigated. During the hydrogen generation from the NaBH4-HR, effects of Co loading, Fe loading, NaBH4 concentration, temperature and, catalyst durability were investigated. The maximum HGRs for MMT-H3PO4–CoB and MMT-H3PO4–Co–Fe–B treated with 5 M H3PO4 for 7 days were 1869 and 4536 mL/min/gcatalyst, respectively. The activation energies for MMT-H3PO4–CoB and MMT-H3PO4–Co–Fe–B catalyst samples were 49.5 and 38.90 kJ/mol.  相似文献   

7.
The aim of this work is to prepare CoB catalysts supported on raw bentonite (CoB/bentonite) and Na-exchanged bentonite (CoB/Na-bentonite) by the impregnation and chemical reduction method. The prepared catalysts were characterized using X-ray diffractometry (XRD), X-ray fluorescence spectroscopy (XRF), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and Fourier transform infrared spectroscopy (FTIR) techniques. The activities of the catalysts were tested in the hydrolysis reaction of sodium borohydride (NaBH4) in a semi-batch system. The volume of the evolved hydrogen gas was determined by a water displacement method. The effects of catalyst amount, NaOH (a base stabilizer) concentration, NaBH4 concentration and solution temperature on the hydrogen generation rate were investigated. The maximum hydrogen generation rates were determined as 921.94 mL/min.gcat for CoB/bentonite and 1601.45 mL/min.gcat for CoB/Na-bentonite when the 5 wt % NaBH4 and 10 wt % NaOH solutions were used at 50 °C. The activation energies (Ea) of the hydrolysis reaction over CoB/bentonite and CoB/Na-bentonite were determined as 55.76 and 56.61 kJ/mol, respectively.  相似文献   

8.
In this paper we report the solution combustion synthesis of cobalt oxide nanofoam from solutions of cobalt nitrate and glycine and subsequent use as an effective catalyst precursor for NaBH4 hydrolysis. The catalytic activity results show that the hydrogen generation rate (HGR) at room temperature was much higher for the solution combustion synthesized material than for commercial Co3O4 nanopowder, though their specific surface areas were comparable (∼26–32 m2/g). Using a 0.6 wt.% aqueous solution of NaBH4 at 20 °C and a 5 wt.% catalyst precursor loading, a HGR of 1.93 L min−1 gcat−1 was achieved for solution combustion synthesized Co3O4. In contrast, at the same conditions, for commercial Co3O4 and elemental Co powders HGRs of 0.98 and 0.49 L min−1 gcat−1 were achieved respectively. This type of synthesis is amenable to many complex metal oxide catalysts as well, such as LiCoO2, which have also been shown to be good catalyst precursors for hydrolysis of NaBH4.  相似文献   

9.
In this work, a series of shaped CoB/Ni-foam catalysts were directly synthesized by using a convenient and simple electroless plating method. Despite the low loading amount of CoB, the catalysts showed high catalytic performance in the hydrolysis of NaBH4 solution, and the maximum hydrogen generation rate reached 1930 mL min?1 (g CoB)?1 in 1 wt % NaBH4 + 5 wt % NaOH solution at 293 K. The catalysts demonstrated distinct stability, and the hydrogen generation rate was almost unchanged after 6 cycles. Furthermore, the catalysts could be easily recovered from the reaction system by a magnet. These characteristics make CoB/Ni-foam a high performance and cost effective catalyst for practical applications of hydrogen generation.  相似文献   

10.
A Co/HTNT catalyst is developed by immobilizing Co on the surface of titanate nanotubes. The microstructure and composition of the catalyst are investigated with atomic absorption spectroscopy (AAS), high resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), Fourier transform infrared spectrometer (FT-IR) and X-ray photoelectron spectroscopy (XPS). The developed Co/HTNT catalyst shows great performance in catalyzing NaBH4 hydrolysis. The hydrolysis of 25 mg NaBH4 catalyzed by 50 mg Co/HTNT in 10 g NaOH solution (12.5 wt%) provides a hydrogen production rate of 1.04 L min?1 gCo?1 at 30 °C, and the activation energy of the reaction is 29.68 kJ mol?1. The high catalytic activity and economical property make this catalyst a promising choice for on-site hydrogen production from NaBH4 hydrolysis.  相似文献   

11.
Novel composites consisting of cobalt–boron (CoB) catalyst and sodium borohydride (NaBH4) implantation in polymers (polyethylene glycol (PEG) or sodium alginate) were prepared for portable hydrogen production. The CoB catalyst was synthesized by the reduction of cobalt salt in NaBH4 solution followed by heat treatment in nitrogen atmosphere. The catalyst was embedded in PEG gel or alginate beads and NaBH4 was directly added in PEG–dimethylformamide (DMF) gel and adsorbed in alginate beads. It is noted that the composites prepared are stable in dry air and can be easily used for hydrogen production. A rate of hydrogen production of 750 ml min−1 g−1 was reached when simply putting the composites into pure water. The humidified pure hydrogen can be used conveniently for fuel cells.  相似文献   

12.
Inorganic acids such as hydrochloric acid (HCl), nitric acid (HNO3) and sulphuric acid (H2SO4) are generally used in the acid modification of clays. Here, CoB catalyst was synthesized on the acetic acid-activated kaolin support material (CH3COOH -kaolin- CoB) with an alternative approach. This prepared catalyst, firstly, was used to catalyze the hydrolysis of NaBH4 (NaBH4-HR). The structure of the raw kaolin, kaolin-CH3COOH, and CH3COOH-kaolin-CoB samples were characterized by X-ray diffraction spectroscopy (XRD), Fourier transforms infrared spectroscopy (FTIR), scanning electron microscope (SEM), and nitrogen adsorption. At the same time, this catalyst performance was examined by Co loading, NaBH4 concentration, NaOH concentration, temperature and reusability parameters. The end times of this hydrolysis reaction using raw kaolin-CoB and CH3COOH-kaolin-CoB were found to be approximately 140 and 245 min, respectively. The maximum hydrogen generation rates (HGRs) obtained at temperatures 30 °C and 50 °C were 1533 and 3400 mL/min/gcatalyst, respectively. At the same time, the activation energy was found to be 49.41 kJ/mol.  相似文献   

13.
Spirulina platensis is defined as the dried biomass of cyanobacteria in commercial use and is biomass with high carbon content. Spirulina platensis microalgae strain supported-CoB catalysts to produce hydrogen from sodium borohydride (NaBH4) were prepared for the first time. The Spirulina platensis microalgae strain was modified with phosphoric acid (H3PO4) to proton. Then, the supported catalyst was performed to produce hydrogen from NaBH4 hydrolysis. The optimum H3PO4 concentration, optimum Co amount, and optimum impregnation time of the H3PO4 with the microalgae strain were investigated. The maximum hydrogen production rate for the 30% CoB catalyst supported on microalgae strain treated with H3PO4 was found to be 3940 mL min−1g−1catalyst. X-ray powder diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Brunauer–Emmett–Teller (BET), and scanning electron microscope (SEM) analysis were performed for characterization of CoB catalyst supported on Spirulina microalgae strain. After four consecutive uses, the performance and conversion values of this catalyst were investigated. At the same time, the effect of temperature on the hydrogen production from this hydrolysis reaction was examined. The activation energy with the CoB catalyst supported on Spirulina microalgae strain was calculated as 35.25 kJ mol−1. According to the kinetic model of a power law, n value was found as 0.25 for kinetic studies.  相似文献   

14.
Hydrogen generation from the hydrolysis of aluminum lithium/sodium borohydride (referred to as AlLi/NaBH4) system activated by Co powder with different particle size and amount was evaluated in this paper. The designed aluminum–lithium–cobalt (referred to as Al–Li–Co/NaBH4) systems including Al-5 wt% Li-50 wt% nano Co, Al-7.5 wt% Li-25 wt% nano Co, Al-5 wt% Li-50 wt% micro Co, and Al-7.5 wt% Li-25 wt% micro Co had 100% hydrogen yield at 323 K. The hydrogen generation rates of these systems were regulated by Co species, Co amount, as well as consecutive runs of NaBH4 hydrolysis. The underlying activation mechanism, including the formation of Al0.94Co1.06 alloy and highly active and stable Co-based catalyst has been elaborated in this study. Experimental data present an inexpensive and highly efficient hydrogen source for portable fuel cell.  相似文献   

15.
We report the preparation of metal nanoparticles in various formulations inside p(2-acrylamido-2-methyl-1-propansulfonic acid; p(AMPS)) hydrogels and their utilization as a catalyst in hydrolysis of NaBH4. The swollen, flexible p(AMPS) network was used for metal ion loading and reduction in situ for the preparation of Co:Ni nanoparticles as bimetallic clusters in various formulation, and Co and Ni bimetallic catalysts as Co + Co, Co + Ni, Ni + Co and Ni + Ni. In addition to utilization of hydrogels as support materials, the p(AMPS)-metal nanoparticle system was used as catalyst to generate hydrogen in the hydrolysis of NaBH4 with very high yield. Various parameters for the hydrolysis reaction were determined and the activation parameters were calculated. For the first time, inclusion of ferrite magnetic particles to control hydrogen generation on demand by using an externally applied magnetic field to remove the hydrogel-catalyst system from the hydrolysis medium is reported.  相似文献   

16.
The development of efficient and non-noble catalyst is of great significance to hydrogen generation techniques. Three surface-oxidized cobalt borides of Co–B–O@CoxB (x = 0.5, 1 and 2) have been synthesized that can functionalize as active catalysts in both alkaline water electrolysis and the hydrolysis of sodium borohydride (NaBH4) solution. It is discovered that oxidation layer and low boron content favor the oxygen evolution reaction (OER) activity of Co–B–O@CoxB in alkaline water electrolysis. And surface-oxidized cobalt boride with low boron content is more active toward hydrolysis of NaBH4 solution. An alkaline electrolyzer fabricated using the optimized electrodes of Co–B–O@CoB2/Ni as cathode and Co–B–O@Co2B/Ni as anode can deliver current density of 10 mA cm−2 at 1.54 V for overall water splitting with satisfactory stability. Meanwhile, Co–B–O@Co2B affords the highest hydrogen generation rate of 3.85 L min−1 g−1 for hydrolysis of NaBH4 at 25 °C.  相似文献   

17.
Poly(N-vinyl-2-pyrrolidone)(PVP)-protected Au/Ni bimetallic nanoparticles (BNPs) were prepared in one-vessel via chemical reduction of the corresponding ions with dropwise addition of NaBH4, and their catalytic activity in the hydrogen generation from hydrolysis of a basic NaBH4 solution was examined. The structure, particle size, and chemical composition of the resultant BNPs were characterized by Ultraviolet–visible spectrophotometry (UV–Vis), X-ray photoelectron spectroscopy (XPS), Transmission electron microscopy (TEM) and High-resolution transmission electron microscopy (HR-TEM). The effects of processing parameters such as metal composition, metal ion concentration, and mole ratio of PVP to metal ion on the hydrolysis of a basic NaBH4 solution were studied in detail. The results indicated that as-prepared Au/Ni BNPs showed a higher catalytic activity than corresponding monometallic NPs (MNPs) in the hydrogen generation from the hydrolysis reaction of a basic NaBH4 solution. Among all the MNPs and BNPs, Au/Ni BNPs with the atomic ratio of 50/50 exhibited the highest catalytic activity, showing a hydrogen generation rate as high as 2597 mL-H2 min−1 g-catalyst−1 at 30 °C, which can be ascribed to the presence of negatively charged Au atoms and positively charged Ni atoms. Based on the kinetic study of the hydrogen generation from the hydrolysis reaction of a basic NaBH4 solution over the PVP-protected Au/Ni BNPs, the corresponding apparent activation energy was determined as 30.3 kJ/mol for the BNPs with the atomic ratio of 50/50.  相似文献   

18.
This paper presents hydrogen generation measurements from the hydrolysis of NaBH4 aqueous solutions catalyzed by Co doping on single, bimetallic and trimetallic oxide supports (Co/CuO, Co/NiO, Co/Al2O3, Co/NiO–Al2O3, Co/CuO–Al2O3, and Co/CuO–NiO–Al2O3). Support materials are synthesized by the co-precipitation method. Then, Co is doped into support materials by the impregnation method. It is found that Co/CuO–NiO–Al2O3 catalyst exhibited high reaction activity with a maximum hydrogen generation rate (HGR) of 2067.2 ml min?1 gcat?1 at 25 °C. The effect of temperature of the solution, Co amount, and recyclability of the catalyst on hydrogen generation with Co/CuO–NiO–Al2O3 catalyst is investigated in detail. In addition, the highest HGR for Co/CuO–NiO–Al2O3 catalyst is obtained at 55 °C as 6460.0 ml min?1 gcat?1. The activation energy is calculated to be 31.59 kJ mol?1 using Co/CuO–NiO–Al2O3 catalyst. Co/CuO–NiO–Al2O3 catalyst exhibits zero-order reaction kinetics concerning NaBH4 concentration. In addition, the Co/CuO–NiO–Al2O3 catalyst provided high reusability after 5 cycles.  相似文献   

19.
Carbon aerogels (CAs) with oxygen-rich functional groups and high surface area are synthesized by hydrothermal treatment of glucose in the presence of boric acid, and are used as the support for loading cobalt catalysts (CAs/Co). Cobalt nanoparticles distribute uniformly on the surface of ACs, creating highly dispersed catalytic active sites for hydrolysis of alkaline sodium borohydride solution. A rapid hydrogen generation rate of 11.22 L min−1 g(cobalt)−1 is achieved at 25 °C by hydrolysis of 1 wt% NaBH4 solution containing 10 wt% NaOH and 20 mg the CAs/Co catalyst with a cobalt loading of 18.71 wt%. Furthermore, various influences are systematically investigated to reveal the hydrolysis kinetics characteristics. The activation energy is found to be 38.4 kJ mol−1. Furthermore, the CAs/Co catalyst can be reusable and its activity almost remains unchanged after recycling, indicating its promising applications in fuel cell.  相似文献   

20.
Supported Co catalysts with different supports were prepared for hydrogen generation (HG) from catalytic hydrolysis of alkaline sodium borohydride solution. As a result, we found that a γ-Al2O3 supported Co catalyst was very effective because of its special structure. A maximum HG rate of 220 mL min−1 g−1 catalyst and approximately 100% efficiency at 303 K were achieved using a Co/γ-Al2O3 catalyst containing 9 wt.% Co. The catalyst has quick response and good durability to the hydrolysis of alkaline NaBH4 solution. It is feasible to use this catalyst in hydrogen generators with stabilized NaBH4 solutions to provide on-site hydrogen with desired rate for mobile applications, such as proton exchange membrane fuel cell (PEMFC) systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号