首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Solid Oxide Fuel Cell (SOFC) integrated into Micro Gas Turbine (MGT) is a multivariable nonlinear and strong coupling system. To enable the SOFC and MGT hybrid power system to follow the load profile accurately, this paper proposes a self-tuning PID decoupling controller based on a modified output-input feedback (OIF) Elman neural network model to track the MGT output power and SOFC output power. During the modeling, in order to avoid getting into a local minimum, an improved particle swarm optimization (PSO) algorithm is employed to optimize the weights of the OIF Elman neural network. Using the modified OIF Elman neural network identifier, the SOFC/MGT hybrid system is identified on-line, and the parameters of the PID controller are tuned automatically. Furthermore, the corresponding decoupling control law is achieved by the conventional PID control algorithm. The validity and accuracy of the decoupling controller are tested by simulations in MATLAB environment. The simulation results verify that the proposed control strategy can achieve favorable control performance with regard to various load disturbances.  相似文献   

2.
Solid oxide fuel cell and micro gas turbine (SOFC/MGT) hybrid system is a promising distributed power technology. In order to ensure the system safe operation as well as long lifetime of the fuel cell, an effective control manner is expected to regulate the temperature and fuel utilization at the desired level, and track the desired power output. Thus, a multi-loop control strategy for the hybrid system is investigated in this paper. A mathematical model for the SOFC/MGT hybrid system is built firstly. Based on the mathematical model, control cycles are introduced and their design is discussed. Part load operation condition is employed to investigate the control strategies for the system. The dynamic modeling and control implementation are realized in the MATLAB/SIMULINK environment, and the simulation results show that it is feasible to build the multi-loop control methods for the SOFC/MGT hybrid system with regard to load disturbances.  相似文献   

3.
固体氧化物燃料电池与燃气轮机混合发电系统   总被引:1,自引:0,他引:1  
基于固体氧化物燃料电池系统的高效率、环保性以及排气废热的巨大利用潜能,将其与燃气轮机组成混合发电装置,是一种极有前景的分布式发电方案.文章以SWP公司的加压型SOFC-小型燃气轮机混合循环系统为例,对固体氧化物燃料电池及燃气轮机混合循环系统的原理及发展现状作了分析,为我国固体氧化物燃料电池-燃气轮机混合循环系统的研制提供参考.  相似文献   

4.
A hybrid plant producing combined heat and power (CHP) from biomass by use of a two-stage gasification concept, solid oxide fuel cells (SOFC) and a micro gas turbine was considered for optimization. The hybrid plant represents a sustainable and efficient alternative to conventional decentralized CHP plants. A clean product gas was produced by the demonstrated two-stage gasifier, thus only simple gas conditioning was necessary prior to the SOFC stack. The plant was investigated by thermodynamic modeling combining zero-dimensional component models into complete system-level models. Energy and exergy analyses were applied. Focus in this optimization study was heat management, and the optimization efforts resulted in a substantial gain of approximately 6% in the electrical efficiency of the plant. The optimized hybrid plant produced approximately 290 kWe at an electrical efficiency of 58.2% based on lower heating value (LHV).  相似文献   

5.
Solid oxide fuel cell (SOFC) has been widely recognized as one of the most promising fuel cells. The SOFC performance is highly influenced by several parameters associated with the internal multi-physicochemical processes. In this work, the optimal modeling strategy is designed to determine the parameters of SOFC using a simple and efficient barebone particle swarm optimization (BPSO) algorithm. The cooperative coevolution strategy is applied to divide the output voltage function into four subfunctions based on the interdependence among variables. To the nonlinear characteristic of SOFC model, a hybrid learning strategy is proposed for BPSO to ensure a good balance between exploration and exploitation. The experimental results illustrate the effectiveness of the proposed algorithm. The comparisons also indicate that cooperative coevolution strategy and hybrid learning improve the performance of original PSO algorithm, offering better approximation effect and stronger robustness.  相似文献   

6.
Solid oxide fuel cell (SOFC) is characterized in high performance and high temperature exhaust, and it has potential to reach 70% efficiency if combined with gas turbine engine (GT). Because the SOFC is in developing stage, it is too expensive to obtain. This paper proposes a feasibility study by using a burner (Comb A) to simulate the high temperature exhaust gas of SOFC. The second burner (Comb B) is connected downstream of Comb A, and preheated hydrogen is injected to simulate the condition of sequential burner (SeqB). A turbocharger and a water injection system are also integrated in order to simulate the situation of a real SOFC/GT hybrid system. The water injection system is used to simulate the water mist addition at external reformer.  相似文献   

7.
Operating strategies of solid oxide fuel cell (SOFC) combined heat and power (CHP) systems are developed and evaluated from a utility, and end-user perspective using a fully integrated SOFC-CHP system dynamic model that resolves the physical states, thermal integration and overall efficiency of the system. The model can be modified for any SOFC-CHP system, but the present analysis is applied to a hotel in southern California based on measured electric and heating loads. Analysis indicates that combined heat and power systems can be operated to benefit both the end-users and the utility, providing more efficient electric generation as well as grid ancillary services, namely dispatchable urban power.Design and operating strategies considered in the paper include optimal sizing of the fuel cell, thermal energy storage to dispatch heat, and operating the fuel cell to provide flexible grid power. Analysis results indicate that with a 13.1% average increase in price-of-electricity (POE), the system can provide the grid with a 50% operating range of dispatchable urban power at an overall thermal efficiency of 80%. This grid-support operating mode increases the operational flexibility of the SOFC-CHP system, which may make the technology an important utility asset for accommodating the increased penetration of intermittent renewable power.  相似文献   

8.
《能源学会志》2014,87(1):18-27
In this paper, the model of hybrid solid oxide fuel cell (SOFC) and gas turbine (GT) cycle is applied to investigate the effects of the inlet fuel type and composition on the performance of the hybrid SOFC–GT cycle. The sensitivity analyses of the impacts of the concentration of the different components, namely, methane, hydrogen, carbon dioxide, carbon monoxide, and nitrogen, in the inlet fuel on the performance of the hybrid SOFC–GT cycle are performed. The simulation results are presented with respect to a reference case, when the system is fueled by pure methane. Then, the performance of the hybrid SOFC–GT system when methane is partially replaced by each component within a corresponding range of concentration with an increment of 5% at each step is investigated. The results point out that the output powers of the SOFC, GT, and cycle as a whole decrease sharply when methane is replaced with other species in majority of the cases.  相似文献   

9.
The aim of this work is to analyze methane-fed internal reforming solid oxide fuel cell–gas turbine (IRSOFC—GT) power generation system based on the first and second law of thermodynamics. Exergy analysis is used to indicate the thermodynamic losses in each unit and to assess the work potentials of the streams of matter and of heat interactions. The system consists of a prereformer, a SOFC stack, a combustor, a turbine, a fuel compressor and air compressor, recuperators and a heat recovery steam generator (HRSG). A parametric study is also performed to evaluate the effect of various parameters such as fuel flow rate, air flow rate, temperature and pressure on system performance.  相似文献   

10.
Power generation using gas turbine (GT) power plants operating on the Brayton cycle suffers from low efficiencies, resulting in poor fuel to power conversion. A solid oxide fuel cell (SOFC) is proposed for integration into a 10 MW gas turbine power plant, operating at 30% efficiency, in order to improve system efficiencies and economics. The SOFC system is indirectly coupled to the gas turbine power plant, paying careful attention to minimize the disruption to the GT operation. A thermo-economic model is developed for the hybrid power plant, and predicts an optimized power output of 20.6 MW at 49.9% efficiency. The model also predicts a break-even per-unit energy cost of USD 4.65 ¢ kWh−1 for the hybrid system based on futuristic mass generation SOFC costs. This shows that SOFCs may be indirectly integrated into existing GT power systems to improve their thermodynamic and economic performance.  相似文献   

11.
Power generation using gas turbine (GT) power plants operating on the Brayton cycle suffers from low efficiencies, resulting in poor fuel to power conversion. A solid oxide fuel cell (SOFC) is proposed for integration into a 10-MW GT power plant, operating at 30% efficiency, in order to improve system efficiencies and economics. The SOFC system is indirectly coupled to the GT, in order to minimize the disruption to the GT operation. A thermo-economic model is developed to simulate the hybrid power plant and to optimize its performance using the method of Lagrange Multipliers. It predicts an optimized power output of 18.9 MW at 48.5% efficiency, and a breakeven per-unit energy cost of USD 4.54 ¢ kW h−1 for the hybrid system based on futuristic mass generation SOFC costs.  相似文献   

12.
Power generation using gas turbine (GT) power plants operating on the Brayton cycle suffers from low efficiencies, resulting in poor fuel to power conversion. A solid oxide fuel cell (SOFC) is proposed for integration into a 10 MW gas turbine power plant, operating at 30% efficiency in order to improve system efficiencies and economics. The SOFC system is semi-directly coupled to the gas turbine power plant, with careful attention paid to minimize the disruption to the GT operation. A thermo-economic model is developed for the hybrid power plant, and predicts an optimized power output of 21.6 MW at 49.2% efficiency. The model also predicts a breakeven per-unit energy cost of USD 4.70 ¢/kWh for the hybrid system based on futuristic mass generation SOFC costs. Results show that SOFCs can be semi-directly integrated into existing GT power systems to improve their thermodynamic and economic performance.  相似文献   

13.
Solid Oxide Fuel Cells (SOFCs) are of great interest nowadays. The feature of SOFCs makes them suitable for hybrid systems because they work high operating temperature and when combined with conventional turbine power plants offer high cycle efficiencies. In this work a hybrid solid oxide fuel cell and gas turbine power system model is developed. Two models have been developed based on simple thermodynamic expressions. The simple models are used in the preliminary part of the study and a more realistic based on the performance maps. A comparative study of the simulated configurations, based on an energy analysis is used to perform a parametric study of the overall hybrid system efficiency. Some important observations are made by means of a sensitivity study of the whole cycle for the selected configuration. The results of the selected model were compared to an earlier model from an available literature.  相似文献   

14.
A hybrid model composed of a least square support vector machine (LS-SVM) model and a pressure-incremental model is developed to dispose operation conditions of current, temperature, cathode and anode gas pressures, which have major impacts on a proton exchange membrane fuel cell's (PEMFC) performance. The LS-SVM model is built to incorporate current and temperature and a particle swarm optimization (PSO) algorithm is used to improve its performance. The optimized LS-SVM model fits the experimental data well, with a mean squared error of 0.0002 and a squared correlation coefficient of 99.98%. While a pressure-incremental model with only one empirical coefficient is constructed to for anode and cathode pressures with satisfactory results. Combining these two models together makes a powerful hybrid multi-variable model that can predict a PEMFC's voltage under any current, temperature, cathode and anode gas pressure. This black-box hybrid PEMFC model could be a competitive solution for system level designs such as simulation, real-time control, online optimization and so on.  相似文献   

15.
Solid oxide fuel cell gas turbine (SOFC-GT) hybrid systems for producing electricity have received much attention due to high-predicted efficiencies, low pollution and availability of natural gas. Due to the higher value of peak power, a system able to meet fluctuating power demands while retaining high efficiencies is strongly preferable to base load operation. SOFC systems and hybrid variants designed to date have had narrow operating ranges due largely to the necessity of heat management within the fuel cell. Such systems have a single degree of freedom controlled and limited by the fuel cell. This study will introduce a new SOFC-GT hybrid configuration designed to operate over a 5:1 turndown ratio, while maintaining the SOFC stack exit temperature at a constant 1000 °C. The proposed system introduces two new degrees of freedom through the use of a variable-geometry nozzle turbine to directly influence system airflow, and an auxiliary combustor to control the thermal and power needs of the turbomachinery.  相似文献   

16.
对微型燃机发电装置及与燃料电池复合装置作了简介,并比较了采用顶层循环的固体氧化物燃料电池-微型燃机复合发电装置与单独微型燃机发电装置各自的循环特点,以燃机功率为50kW的微型燃机及其复合发电装置为例,进行了两者的性能分析比较:在复合发电装置中,分析了余热利用的优越性,并对余热供热进行了计算分析.  相似文献   

17.
The aim of the paper is to investigate possible improvements in the geometry design of a monolithic solid oxide fuel cells (SOFCs) through analysis of the entropy generation terms. The different contributions to the local rate of entropy generation are calculated using a computational fluid dynamic (CFD) model of the fuel cell, accounting for energy transfer, fluid dynamics, current transfer, chemical reactions and electrochemistry. The fuel cell geometry is then modified to reduce the main sources of irreversibility and increase its efficiency.  相似文献   

18.
The purpose of this study is to compare the part-load performance of a solid oxide fuel cell/gas turbine (SOFC/GT) hybrid system in three different control modes: fuel-only control, rotational speed control, and variable inlet guide vane (VIGV) control. While the first mode maintains a constant air supply and reduces the supplied fuel to achieve part-load operation, the other modes are distinguished by the simultaneous controls of the air and fuel supplied to the system. After the performance analysis of a SOFC/GT hybrid system under part-load operating conditions, it was concluded that the rotational speed control mode provided the best performance characteristics for part-load operations. In spite of worse performance than the rotational speed control mode, the VIGV control mode can be a good candidate for part-load operation in a large-scale hybrid system in which the rotational speed control is not applicable. It was also found that, in spite of a relatively small contribution to the total system power generation, the gas turbine plays an important role in part-load operation of a SOFC/GT hybrid system.  相似文献   

19.
Cell temperature control plays a crucial role in SOFC operation. In order to design effective temperature control strategies by model-based control methods, a dynamic temperature model of an SOFC is presented in this paper using least squares support vector machines (LS-SVMs). The nonlinear temperature dynamics of the SOFC is represented by a nonlinear autoregressive with exogenous inputs (NARXs) model that is implemented using an LS-SVM regression model. Issues concerning the development of the LS-SVM temperature model are discussed in detail, including variable selection, training set construction and tuning of the LS-SVM parameters (usually referred to as hyperparameters). Comprehensive validation tests demonstrate that the developed LS-SVM model is sufficiently accurate to be used independently from the SOFC process, emulating its temperature response from the only process input information over a relatively wide operating range. The powerful ability of the LS-SVM temperature model benefits from the approaches of constructing the training set and tuning hyperparameters automatically by the genetic algorithm (GA), besides the modeling method itself. The proposed LS-SVM temperature model can be conveniently employed to design temperature control strategies of the SOFC.  相似文献   

20.
This paper presents an analysis of the fuel flexibility of a methane-based solid oxide fuel cell-gas turbine (SOFC-GT) hybrid system. The simulation models of the system are mathematically defined. Special attention is paid to the development of an SOFC thermodynamic model that allows for the calculation of radial temperature gradients. Based on the simulation model, the new design point of system for new fuels is defined first; the steady-state performance of the system fed by different fuels is then discussed. When the hybrid system operates with hydrogen, the net power output at the new design point will decrease to 70% of the methane, while the design net efficiency will decrease to 55%. Similar to hydrogen, the net output power of the ethanol-fueled system will decrease to 88% of the methane value due to the lower cooling effect of steam reforming. However, the net efficiency can remain at 61% at high level due to increased heat recuperation from exhaust gas. To increase the power output of the hybrid system operating with non-design fuels without changing the system configuration, three different measures are introduced and investigated in this paper. The introduced measures can increase the system net power output operating with hydrogen to 94% of the original value at the cost of a lower efficiency of 45%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号