首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phenolic compound distribution of Turkish olive cultivars and their matching olive oils together with the influence of growing region were investigated. One hundred and one samples of olives from 18 cultivars were collected during two crop years from west, south and south‐east regions of Turkey. The olives were processed to oils and both olive and olive oil samples were evaluated for their phenolic compound distribution. The results have shown that main phenolics of Turkish olives were tyrosol, oleuropein, p‐coumaric acid, verbascoside, luteolin 7‐O‐glucoside, rutin, trans cinnamic acid, luteolin, apigenin, cyanidin 3‐O‐glucoside and cyanidin 3‐O‐rutinoside. Oleuropein and trans cinnamic acid were present in higher amounts among all phenolics. Principal component analyses showed that the growing region did not have drastic effect on phenolic profile of olives. The major phenolic compounds of olive oils were tyrosol, syringic acid, p‐coumaric acid, luteolin‐7‐O‐glucoside, trans cinnamic acid, luteolin and apigenin. Luteolin is a predominant phenolic compound in almost all oil samples. Total phenol concentrations of Southeast Anatolian oils were found to be lower than those of the other regions.  相似文献   

2.
Virgin olive oil has high levels of phenolic compounds that are highly bioavailable; these compounds are receiving considerable attention for their antioxidant activity, closely related to the prevention of non‐communicable chronic diseases. The aim of this work was to characterize the phenolic profile and antioxidant capacity of monovarietal olive oils cvs. Arauco, Arbequina, Farga and Empeltre produced in Argentina. This study focused on the relationship between the single molecules or classes of molecules quantified by SPE‐CZE, the corresponding Folin‐Ciocalteu results, and antioxidant capacity using three different tests. Fifteen compounds were simultaneously determined: tyrosol, vinylphenol, oleuropein, hydroxytyrosol, rutin, catechin, naringenin, cinnamic acid, chlorogenic acid, syringic acid, luteolin, apigenin, vanillin acid, quercetin, and caffeic acid. The phenolic contents of the monovarietal olive oils show significant differences between different varieties (p < 0.05), with positive and significant Pearson's correlation found between Folin–Ciocalteu and CZE. Besides, the correlation between the content of total polyphenols and antioxidant capacity was high for all the antioxidant assays performed. When analyzing the correlation coefficients of the different families of phenolic compounds studied, simple phenols and cinnamic acid derivatives show a higher correlation with antioxidant capacity. Thus, findings obtained in this study demonstrated that Arauco olive oil, autochthonous for Argentina, possesses the highest antioxidant/free‐radical scavenging properties, which are very likely due to the presence of high contents of phenolic compounds.  相似文献   

3.
Varieties of the olive cultivar Arbequina have recently been cultivated in Turkey. The objective of the study is to characterize and evaluate extra‐virgin olive oils (EVOO) produced from Arbequina grown in the Aegean and Mediterranean regions of Turkey. Major and minor components such as carotenoids, squalene, phenolics and tocopherols were studied to assess their effects on product quality and health benefits. The samples, identified as ArbqI and ArbqA, were from the Izmir and Adana provinces, respectively. Samples were analyzed by GC‐FID to determine fatty acid composition, sterol composition, TAG profile and squalene content. Individual phenolic fractions were analyzed by LC–MS/MS and tocopherol isomers were determined by HPLC. According to the results obtained from this study; Total phenolic content (TPC) of the samples were 454.68 and 50.86 mg Gallic acid/kg oil for ArbqI and ArbqA, respectively. Hydroxytyrosol and tyrosol were determined to be the main phenols. The major tocopherol isomer found in ArbqI and ArbqA was α‐tocopherol with levels of 179.55 and 202.5 mg/kg oil, respectively. β‐Carotene levels in both samples were similar at 0.2 mg/kg. Findings of this study were compared with the literature on Arbequina olive oil produced in different countries. It was determined that Arbequina olive oil of high quality can be produced in Turkey, especially in the Aegean region.  相似文献   

4.
The purpose of this investigation was to evaluate and compare the differences in the phenolic fractions and antioxidant properties of virgin olive oils from the Nizip yaglik and Kilis yaglik olive varieties cultivated in native and different olive growing areas of Turkey. The phenolic composition of olive oils was carried out by HPLC-DAD and identifications were made by LC–MS. Fourteen phenolic compounds were identified and among these compounds elenolic acid, tyrosol and hydroxytyrosol were the most dominant. Based on the results, there was no difference in distribution of phenolic compounds, but the total phenolic content in oil from native regions was higher than in oil from Bornova regions. The antioxidant capacity of olive oil extracts was determined by two different methods, including DPPH and ABTS. In both methods, antioxidant capacity values were higher in oil from native regions.  相似文献   

5.
The composition of olive oils may vary depending on environmental and technological factors. Fatty acid profiles and Fourier‐transform infrared (FT‐IR) spectroscopy data in combination with chemometric methods were used to classify extra‐virgin olive oils according to geographical origin and harvest year. Oils were obtained from 30 different areas of northern and southern parts of the Aegean Region of Turkey for two consecutive harvest years. Fatty acid composition data analyzed with principal component analysis was more successful in distinguishing northern olive oil samples from southern samples compared to spectral data. Both methods have the ability to differentiate olive oil samples with respect to harvest year. Partial least squares (PLS) analysis was also applied to detect a correlation between fatty acid profile and spectral data. Correlation coefficients (R2) of a calibration set for stearic, oleic, linoleic, arachidic and linolenic acids were determined as 0.83, 0.97, 0.97, 0.83 and 0.69, respectively. Fatty acid profiles were very effective in classification of oils with respect to geographic origin and harvest year. On the other hand, FT‐IR spectra in combination with PLS could be a useful and rapid tool for the determination of some of the fatty acids of olive oils.  相似文献   

6.
Olives were collected from various districts of Turkey (North and South Aegean sub-region, Bursa-Akhisar, South East Anatolia region) harvested over seven (2001–2007) seasons. The aim of this study was to characterize the chemical profiles of the oils derived from single variety Turkish olives including Ayvalik, Memecik, Gemlik, Erkence, Nizip Yaglik and Uslu. The olive oils were extracted by super press and three phase centrifugation from early harvest olives. Chosen quality indices included free fatty acid content (FFA), peroxide value (PV) and spectrophotometric characteristics in the ultraviolet (UV) region. According to the FFA results, 46% (11 out of 24 samples) were classified as extra virgin olive oils; whereas using the results of PV and UV, over 83% (over 19 of the 24 samples) had the extra virgin olive oil classification. Other measured parameters included oil stability (oxidative stability, chlorophyll pigment, pheophytin-α), cistrans fatty acid composition and color index. Oxidative stability among oils differed whereas the cis–trans fatty acid values were within the national and international averages. Through the application of two multivariate statistical methods, Principal component and hierarchical analyses, early harvest virgin olive oil samples were classified according to the geographical locations categorized in terms of fatty acid profiles. Such statistical clustering gave rise to defined groups. These data provide evidence of the variation in virgin olive oil quality, especially early harvest and cistrans isomers of fatty acid profiles from the diverse agronomic conditions in the olive growing regions of Turkey.  相似文献   

7.
Volatile and phenolic compositions of olive oil obtained from the cv. Halhali were investigated in the present study. Fruits were harvested at the optimum maturity stage of ripeness and immediately processed with cold press. Simultaneous distillation/extraction (SDE) with dichloromethane was applied to the analysis of volatile compounds of olive oil. Sensory analysis showed that the aromatic extract obtained by SDE was representative of olive oil odour. In the olive oil, 40 and 44 volatile components were identified and quantified in 2010 and 2012 year, respectively. The total amount of volatile compounds was 18,007 and 19,178 μg kg?1 for 2010 and 2012, respectively. Of these, 11 compounds in the 2010 and 12 in the 2012 harvest presented odour activity values (OAVs) greater than 1, with 1‐octen‐3‐ol, ethyl‐3‐methyl butanoate, (E)‐2‐heptenal and (E,Z)‐2,4‐decadienal being those with the highest OAVs in olive oil. The high‐performance liquid chromatographic method coupled with diode‐array detection was used to identify and quantify phenolic compounds of the olive oil. A total of 14 phenolic compounds in both years were identified and quantified in olive oil. The major phenolic compounds that were identified in both years were hydroxytyrosol, tyrosol, elenolic acid, luteolin, and apigenin. Antioxidant activity of olive oil was measured using the DPPH and ABTS methods.  相似文献   

8.
Phenolic compounds have a high importance in olive oil because of their effect on shelf life and sensory properties. This study reports on the HPLC profiles of the phenolic compounds of virgin olive oils obtained from Arbequina olives from the harvesting in a super‐intensive orchard under a linear irrigation system. In addition, phenolic content, carotenoid and chlorophyllic pigments, and oxidative stability were analyzed. Total phenol content and 3,4‐DHPEA‐EDA increased up to a maximum throughout the ripening process. The simple phenols tyrosol and hydroxytyrosol acetate increased throughout the ripening process, however, there was not found a clear trend in hydroxytyrosol content. Minor constituents such as vanillic acid and p‐coumaric acid increased up to a maximum and then decreased, since vanillin decreased progressively throughout the time of harvest. 3,4‐DHPEA‐EDA and lignans were present in considerable amounts in the studied samples, while oleuropein aglycone was present in a low amount. Total phenol content and oil stability followed the same trend throughout the study, so a very good correlation was established between them. Total secoiridoids and, specifically, 3,4‐DHPEA‐EDA seemed to be responsible for oil stability. The pigment content decreased during ripening, and not a positive correlation was found between pigments and oil stability. Practical applications : The results can be used to determine the best time for harvesting in order to obtain olive oils with different phenols and pigment contents. This is important for sensory characteristics of the olive oils and also for olive oil stability.  相似文献   

9.
Changes in olive properties and oil quality, oxidative stability, phenolic and chemical composition of two common Turkish varieties (Memecik and Edremit) during maturation were investigated. Olive samples were collected in their own growing region for five different harvest dates and processed to oil with a laboratory scale mill. Metabolic behaviors of these two varieties along with the maturation were different in terms of some compositional parameters. Oleic acid, triolein, β-sitosterol, oleuropein, hydroxytyrosol, and tyrosol contents of olive or olive oils fluctuated with maturation. However, changes in average weight, flesh/pit ratio, water and oil contents of the olives were observed. Phenolics such as trans cinnamic acid contents of both olive fruits decreased whereas cyanidin 3-O-glucoside and cyanidin 3-O-rutinoside anthocyanins increased. Free fatty acids of virgin olive oils were found independent of maturity although some slight changes were determined in peroxide value, dien and trien conjugations. Some compositional parameters such as pigment concentration, tocopherols, stearic acid, linolenic acid, palmitodiolein and monounsaturated/polyunsaturated fatty acid ratio decreased while linoleic acid, dioleolinolein, palmitooleolinolein and Δ-5-avenasterol percentages increased with the maturation. A clear discrimination was observed with principal component analysis. The data obtained can also be considered useful for providing information to determine the ideal maturity stage.  相似文献   

10.
The factors influencing the oxidative stability of different commercial olive oils were evaluated. Comparisons were made of (i) the oxidative stability of commercial olive oils with that of a refined, bleached, and deodorized (RBD) olive oil, and (ii) the antioxidant activity of a mixture of phenolic compounds extracted from virgin olive oil with that of pure compounds andα-tocopherol added to RBD olive oil. The progress of oxidation at 60°C was followed by measuring both the formation (peroxide value, PV) and the decomposition (hexanal and volatiles) of hydroperoxides. The trends in antioxidant activity were different according to whether PV or hexanal were measured. Although the virgin olive oils contained higher levels of phenolic compounds than did the refined and RBD oils, their oxidative stability was significantly decreased by their high initial PV. Phenolic compounds extracted from virgin olive oils increased the oxidative stability of RBD olive oil. On the basis of PV, the phenol extract had the best antioxidant activity at 50 ppm, as gallic acid equivalents, but on the basis of hexanal formation, better antioxidant activity was observed at 100 and 200 ppm.α-Tocopherol behaved as a prooxidant at high concentrations (>250 ppm) on the basis of PV, but was more effective than the other antioxidants in inhibiting hexanal formation in RBD olive oil.o-Diphenols (caffeic acid) and, to a lesser extent, substitutedo-diphenols (ferulic and vanillic acids), showed better antioxidant activity than monophenols (p- ando-coumaric), based on both PV and hexanal formation. This study emphasizes the need to measure at least two oxidation parameters to better evaluate antioxidants and the oxidative stability of olive oils. The antioxidant effectiveness of phenolic compounds in virgin olive oils can be significantly diminished in oils if their initial PV are too high.  相似文献   

11.
Chemical properties, fatty acid and sterol compositions of olive oils extracted from Gemlik and Halhal? varieties grown in Hatay and Mardin provinces in Turkey were investigated during four maturation stages. The olive oil samples were analyzed for their chemical properties such as free acidity, peroxide value, total carotenoid, total chlorophyll, total phenolic contents, antioxidant activity, fatty acid and sterol compositions. Chemical properties, fatty acids and sterol profiles of olive oil samples generally showed statistically significant differences depending on the varieties, maturation and growing areas (p < 0.05). As free fatty acid contents and total phenolic contents increased, total carotenoid and chlorophyll contents decreased throughout the maturity stages. Total carotenoid and chlorophyll contents of oil samples from Mardin were higher than those of Hatay. The total phenolic compounds of olive oil samples ranged from 20.62 in Gemlik to 525.22 mg GAE/kg oil in Halhal? from Hatay. In general, the phenolic contents and antioxidant activities of olive oil samples were positively associated. Oleic acid content was the highest 71.53 % in H1 samples in Hatay. Total sterol contents were 1194.33 mg/kg in Halhal? and 2008.66 mg/kg in Gemlik from Hatay. Stigmasterol contents of oils obtained from Hatay were lower than those of Mardin. Oleic acid, palmitic acid, β‐sitosterol, ?‐5‐avenasterol and campesterol contents fluctuated with maturation for each of variety from both growing regions. These results showed that the variety, growing area and maturation influence the chemical properties, fatty acid and sterol compositions.  相似文献   

12.
The main objective of this study was to evaluate the effect of different deficit irrigation treatments (control, regulated deficit irrigation [RDI]‐1, RDI‐2, and RDI‐3) on the phenolic profile of the olive paste and oil content. Irrigation treatments with more stress water led to a considerable increase in the phenolic compounds of olive paste, especially in oleuropein (60.24%), hydroxytyrosol (82%), tyrosol (195%), and verbascoside (223%) compared to control. A significant increase in the content of total flavonoids and phenolic acids was also observed for these samples. In virgin olive oils (VOO) elaborated from the most stressed olive trees (RDI‐2 and RDI‐3), a noticeable increase in phenolic substances with antioxidant properties (oleuropein, hydroxytyrosol, tyrosol, secoiridoid derivatives, and o‐vanillin) was observed. Consequently, water stress conditions improved antioxidant activity of VOO.  相似文献   

13.
A reverse-phase high-performance liquid chromatographic technique with isocratic elution has been developed to separate and quantitate the major phenolic compounds of the hydroalcoholic extracts of olive oils. Hydroxytyrosol, tyrosol, caffeic acid,p-hydroxyphenylacetic acid and homovanillic acid were analyzed on a μBonapak C18 column with an acetonitrile/water/acetic acid (20:90:0.18, vol/vol/vol) mixture as a mobile phase. Electrochemical detection provided selectivity as well as sensitivity. The method was applied to the analysis of the most important phenolic compounds in olive oils.  相似文献   

14.
By definition, virgin olive oil is consumed unrefined, although a great proportion of the olive oil produced has to be refined to render it edible. Phenolic compounds are among the substances eliminated during the refining process; in the present work these were characterized by HPLC, and their evolution during the different refining steps was studied. The complete refining process removed most polyphenols from oils, but the behavior of individual compounds at each step also was observed. o-Diphenols (hydroxytyrosol, catechol, and hydroxytyrosol acetate) and flavonoids (luteolin and apigenin) were eliminated first during the alkaline treatment. Tyrosol and 4-ethylphenol remained in the oil until the deodorization step. A large amount of phenolic compounds was discovered in the refining by-products such as soapstocks and deodorization distillates. In the latter streams, the concentrations of tyrosol and 4-ethylphenol reached up to 149 and 3720 mg/kg by-product, respectively. This high level of 4-ethylphenol and its well-known strong off-odor can interfere during further processing of the deodorization distillates, and this must be taken into account when deciding what is to become of them. Similarly, the results of this work open the possibility of recovering phenolic compounds from the “second centrifugation olive oils” by adding a new washing step prior to the refining process. By including this new step, the most polar polyphenols, hydroxytyrosol and tyrosol, will diffuse from oil to water and a concentration of up to 1400 mg/L of hydroxytyrosol may be achieved.  相似文献   

15.
The purpose of this investigation was to study differences in the chlorophyll, carotenoid, and phenolic fractions of virgin olive oils from the Arbequina variety cultivated in different olive growing areas of Spain. Virgin olive oil from Lleida was less heavily pigmented, and these oils showed more negative values for the ordinate a* (of the CIELAB colorimetric system). Pheophytin a was the major chlorophyll pigment, and lutein was the major component of the carotenoid fraction in all oils analyzed. The chlorophyll a concentration in virgin olive oils from Lleida was 700 μg kg−1, but was 175 μg kg−1 in oils from Jaén, and 200 μg kg−1 in oils from Tarragona. Finally, the chlorophyll a/chlorophyll b ratio was 9 in oils from Lleida and around 0.6 in the other two Arbequina olive oils. In relation to the phenolic fraction, the hydroxytyrosol and tyrosol contents were significantly higher in olive oils from Jaén (grown at higher altitude and precipitation rates). The secoiridoid derivatives showed a significantly higher concentration in olive oils from Tarragona, probably due to the low altitude where they grow, and finally the ratio of (dialdehydic form of elenolic acid linked to tyrosol)/lignans had a value of 1.4 in olive oils from Lleida, whereas this value was around 0.7 in the other Arbequina olive oils.  相似文献   

16.
Although large amounts of olive oil are produced in Turkey, not much information on its chemical composition is available in the literature to date. The aim of this study was to evaluate the chemical composition of commercial olive oils produced from the Ayvalik olive cultivar in Canakkale, Turkey. Five different samples corresponding to the olive oil categories of extra virgin (conventional, extra virgin olive oil (EVOO), and organic extra virgin olive oil (OGOO) production), virgin olive oil (OO-1), ordinary virgin olive oil (OO-2) and refined olive oil (RFOO) were evaluated. Olive oils were collected from two consecutive production years. According to the free fatty acids, the absorbance values (K232 and K270), and peroxide values of all the samples conformed to the European standards for olive oil. The level of oleic acid was in the range of 68–73%; while the linoleic acid content was significantly lower in the refined olive oils. The tocopherol and polyphenol content was in the lower range of some European olive oils. However, pinoresinol was a major phenolic compound (5–77 mg/kg depending on the oil category). Its content was markedly higher than in many other oils, which would be a useful finding for olive oil authentication purposes.  相似文献   

17.
Extra virgin olive oils were extracted from six different major olive cultivars (Gemlik, Ayvalik, Domat, Akhisar, Memecik, Arbequina) cultivated in the Aegean region of Turkey. Fatty acid, sterol and tocopherol compositions were analyzed and the results were compared by multivariate statistical analysis. Olive samples were collected from the same orchard in order to limit the contribution of parameters such as climate, soil quality and agricultural practices to the total variance of chemical composition of olive oils. Principal component analysis (PCA) showed that cultivars can be clearly distinguished on the basis of fatty acid and sterol composition. It is of interest to note that palmitoleic acid content of Arbequina, a Spanish cultivar, is significantly (p < 0.05) higher than the local Turkish cultivars in question and it is the only olive sample whose palmitoleic acid concentration is higher than that of the stearic acid concentration, exhibiting a divergent composition from the local Turkish cultivars. β‐Sitosterol and Δ5‐avenasterol contents of the oils are significantly correlated (r = ?0.989, p < 0.05) and this results in a discriminative axis on the PCA loading plot. Tocopherol composition was relatively insufficient in discriminating the olive varieties. Regarding tocopherol compositions Gemlik cultivar is distinguished from other cultivars with its γ‐tocopherol content, which is in average two times higher than that of other cultivars. The result of the present compositional study provides important data which can be used for olive oil authenticity studies in Turkey.  相似文献   

18.
Six olive oils extracted from the cultivars Arbequina, Arbosana, Coratina, Frantoio, Koroneiki, and Picual from 2017 and 2018 harvests, cultivated in Pinheiro Machado, Rio Grande do Sul, Brazil, are evaluated for standard oil composition parameters and bioactive constituents (pigments, tocopherols, and phenolic compounds). Multivariate principal component analysis (PCA) and univariate ANOVA and Fisher's LSD test are used to verify the effect of cultivar and harvest year on oil composition. Olive oil composition met extra virgin olive oil (EVOO) standard parameters and is influenced by both cultivar and harvest year. EVOO produced in 2018 has greater chlorophyll, caffeic acid, ligstroside aglycone, hydroxyoleuropein aglycone, syringic acid, and hydroxytyrosol acetate contents than the EVOOs from 2017. Linoleic acid, ferulic acid, ligstroside aglycone, and hydroxytyrosol acetate are the variables whose contents most contributed to the differentiation of oils by cultivar in both harvest years. Chemical characterization analyses allow for the differentiation of oil composition based on harvest year and cultivar. Metabolic quality data obtained here support the establishment of a local EVOO profile and the compounds that most contributed to treatment differentiation may serve as markers that can be utilized in determining origin, cultivar, and harvest year. Practical Applications: Olive production in Brazil is recent and is based on European cultivars which have not been bred for the local environmental conditions. Therefore, the measurement of olive oil metabolic quality will determine cultivar adaptability to local edaphoclimatic conditions as well as assist in the establishment of a standard of identity for the product and promote the development of its market. Olive oil produced in Southern Brazil shows high quality, and is especially rich in phenolic compounds. Although harvest year influences oil composition, oil from both harvests meet EVOO standards and cultivar specific metabolic markers are observed. This study provides the foundation for olive producers in Southern Brazil to seek authentication of the geographical origin of olive oil.  相似文献   

19.
20.
The characterization of virgin olive oils from six Tunisian cultivars, namely Chétoui, Ain Jarboua, Jarboui, Regregui, Rekhami and Neb Jmel, grown in Nebeur (a region of the Kef) was carried out. These cultivars dominate their natural habitats, but with the exception of the Chétoui cultivar they are only scattered throughout the nation. Several analytical parameters were evaluated; these include quality index, fatty acid composition, chlorophylls, carotenoids, sterols, α‐tocopherol and phenolic compounds. Their relationship with oxidative stability was also tested. The main phenols found were tyrosol, hydroxytyrosol, the dialdehydic form of elenolic acid linked to tyrosol and hydroxytyrosol, oleuropein aglycon and pinoresinol. These phenolic compounds, the colorimetric total phenol content and o‐diphenols showed significant correlations with oxidative stability. Furthermore, most of the analytical parameters of the oils that were determined in this study were greatly influenced by genetic factors (cultivar).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号