首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 52 毫秒
1.
2.
3.
The chromatin elements targeted by the ATPdependent, Swi-Snf nucleosome-remodeling complex are unknown. To address this question, we generated mutations in yeast histone H2B that suppress phenotypes associated with the absence of Swi-Snf. Sin- (Swi-Snf-independent) mutations occur in residues involved in H2A-H2B dimer formation, dimer- tetramer association, and in the H2B N-terminus. The strongest and most pleiotropic Sin- mutation removed 20 amino acid residues from the H2B N-terminus. This mutation allowed active chromatin to be formed at the SUC2 locus in a snf5Delta mutant and resulted in hyperactivated levels of SUC2 mRNA under inducing conditions. Thus, the H2B N-terminus may be an important target of Swi-Snf in vivo. The GCN5 gene product, the catalytic subunit of several nuclear histone acetytransferase complexes that modify histone N-termini, was also found to act in conjunction with Swi-Snf. The phenotypes of double gcn5Deltasnf5Delta mutants suggest that histone acetylation may play both positive and negative roles in the activity of the Swi-Snf-remodeling factor.  相似文献   

4.
5.
6.
7.
Gcn5p is the catalytic subunit of several type A histone acetyltransferases (HATs). Previous studies performed under a limited range of solution conditions have found that nucleosome core particles and nucleosomal arrays can be acetylated by Gcn5p only when it is complexed with other proteins, e.g. Gcn5-Ada, HAT-A2, and SAGA. Here we demonstrate that when assayed in buffer containing optimum concentrations of either NaCl or MgCl2, purified yeast recombinant Gcn5p (rGcn5p) efficiently acetylates both nucleosome core particles and nucleosomal arrays. Furthermore, under conditions where nucleosomal arrays are extensively folded, rGcn5p acetylates folded arrays approximately 40% faster than nucleosome core particles. Finally, rGcn5p polyacetylates the N termini of free histone H3 but only monoacetylates H3 in nucleosomes and nucleosomal arrays. These results demonstrate both that rGcn5p in and of itself is catalytically active when assayed under optimal solution conditions and that this enzyme prefers folded nucleosomal arrays as a substrate. They further suggest that the structure of the histone H3 N terminus, and concomitantly the accessibility of the H3 acetylation sites, changes upon assembly into nucleosomes and nucleosomal arrays.  相似文献   

8.
9.
We have employed a site-directed photochemical cross-linking procedure to precisely map interactions between nucleosomal DNA and the C-terminal tail of core histone H2A. We find that this tail has the potential to contact multiple sites within the nucleosome and that these contacts are dependent upon the configuration of the complex. This tail contacts DNA near the dyad axis within nucleosome core particles but rearranges to a site near the edge of the nucleosomal DNA when linker DNA is present. Moreover, in the presence of linker histone H1 the contacts near the edge of the nucleosome but not at the dyad are further rearranged. In addition, we present further evidence for the suggestion that the binding of linker histone causes a subtle but global change in core histone-DNA interactions within the nucleosome [Usachenko, S. I., Gavin, I. M., and Bavykin, S. G. (1996) J. Biol. Chem. 271, 3831-3836].  相似文献   

10.
11.
12.
13.
Histone H4 can be acetylated at N-terminal lysines K5, K8, K12, and K16, but newly synthesized H4 is diacetylated at K5/K12 in diverse organisms. This pattern is widely thought to be important for histone deposition onto replicating DNA. To investigate the importance of K5/K12 we have mutagenized these lysines in yeast and assayed for nucleosome assembly. Assaying was done in the absence of the histone H3 N terminus, which has functions redundant with those of H4 in histone deposition. Nucleosome assembly was assayed by three methods. Because nucleosome depletion may be lethal, we examined cell viability. We also analyzed nucleosome assembly in vivo and in vitro by examining plasmid superhelicity density in whole cells and supercoiling in yeast cell extracts. All three approaches demonstrate that mutagenizing K5 and K12 together does not prevent cell growth and histone deposition in vivo or in vitro. Therefore, K5/K12 cannot be required for nucleosome assembly in yeast. It is only when the first three sites of acetylation-K5, K8, and K12-are mutagenized simultaneously that lethality occurs and assembly is most strongly decreased both in vivo and in vitro. These data argue for the redundancy of sites K5, K8, and K12 in the deposition of yeast histone H4.  相似文献   

14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号